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ARTICLE INFO ABSTRACT

Available online 15 August 2015 Numerical modeling based on economic principles has become the dominant analytical tool in U.S.
energy policy. Energy models are now used extensively by public agencies, private entities, and academic
researchers, and in recent years have also formed the core of “integrated assessment” models used to
analyze the relationships among the energy system, the economy, and the global climate. However,
fundamental uncertainties are intrinsic in what has become the typical circumstance of multiple models
embodying different representations of the energy-economy, and producing different policy-relevant
outputs that model users are compelled to interpret as equally plausible and/or valid. Because the policy
implications of these outputs can diverge substantially, policy-makers are confronted with a significant
degree of model-based uncertainty and little or no guidance as to how it should be addressed.

This problem of “model uncertainty” has recently been the focus of work in macroeconomics, where
scholars have studied the problem of how a decision-maker should proceed in the face of uncertainty
regarding the correct model of an economic system that is the object of policy. A unifying theme in this
work is the identification of decision-rules that are robust to such uncertainty. This paper describes an
application to energy modeling of the macroeconomists’ insights and methods related to model
uncertainty and robust analysis, focusing on the important example of model representations of
technical change. Using a well-known model by Goulder and Mathai, we treat contrasting assumptions
on technical change - and their implications for CO, emissions abatement policy - as a phenomenon of
model uncertainty. We apply a non-Bayesian decision rule - so-called “min-max regret” - to this
problem and computationally solve the model under the min-max regret criterion, yielding a policy - an
emissions abatement path - that reflects a form of robustness to the model uncertainty.
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1. Introduction regulatory agencies, university researchers, private companies and

non-profit organizations. Moreover, in recent years numerical

Over the past four decades, numerical modeling based upon
economic principles has become the dominant analytical tool in U.
S. energy policy. Models of the energy system or sub-systems, of
the national economy with emphasis on energy sectors, and
combinations of these two types have both proliferated in number
and increased in complexity and detail. They are now used by
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energy-economic models have formed the core of “integrated
assessment” models that represent the relationships among the
economy, the energy system, and the global climate.!

Their usefulness notwithstanding, however, the widespread
application of numerical energy-economic models in policy analysis
poses certain challenges for decision-makers. Among these is the
situation of multiple, “co-existing” models embodying what amount
to competing representations of the energy-economy, and producing
different policy-relevant outputs. While structured multi-model
scenario analyses are a well-established methodology in the energy
modeling community, this community does not provide formal or
quantitative model rankings. As a consequence, results from a now

! We will use the term “energy model” to refer to each of these types, i.e.,
numerical economic equilibrium (partial or general) or optimization models, with
or without linked environmental components.
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sizable group of models must often be interpreted by users as
equally plausible and/or valid. Given that the policy implications of
these results can diverge substantially even in structured compar-
isons, this circumstance confronts policy-makers with a significant
degree of uncertainty and little or no guidance as to how it should be
addressed.

The aim of this paper is to demonstrate how this type of
fundamental model uncertainty can be represented and analyzed
in the context of one of this era’s most important energy policy
problems: determining optimal strategies for reducing carbon
dioxide (CO,) emissions from the energy sector that contribute
to global climate change. We focus on a particularly significant
dimension of model uncertainty: the representation of technolo-
gical change, in this case of the type that lowers the cost of CO,
emissions abatement. Our approach is to apply a non-Bayesian
decision rule and solution concept to a model that incorporates
the key mechanism while being sufficiently simple to clearly
exemplify the analytical approach and provide insight into the
results.

The importance of fundamental energy and integrated assess-
ment model uncertainty, and the practical implications of not
addressing it, were noted by Fischer and Morgenstern [1] in their
study of the divergence of model-based estimates of the potential
costs to the U.S. economy of the Kyoto carbon emissions reduction
agreement. These estimates varied by a factor of five. As these
authors pointed out, “...this variability in cost estimates under-
mines support for mandatory policies to curb emissions, as policy
makers are generally reluctant to adopt a major program without
an understanding of its true costs.”

Not all multi-model, policy-relevant outputs in energy analysis
display this level of variation. Nonetheless, inter-model differences
large enough to be policy relevant are the norm rather than the
exception. Decision-makers may reasonably infer that such
“ensemble uncertainty” accurately reflects the present-day limits
of our ability to predict the consequences of large-scale energy or
environmental policy. If so, then the problem of rationally using
multi-model policy outputs should be addressed in its own right.

In macroeconomics, this problem of model uncertainty has
been the focus of work by Hansen and Sargent [2-4] and Brock
et al. [5-7]. These scholars have studied the problem of how a
decision-maker should proceed in the face of uncertainty regard-
ing the correct model of an economic system that is the object of
policy. A unifying theme in this work is identification of decision-
rules that are “robust” to such uncertainty. While there are
different technical definitions of this concept, colloquially it refers
to decisions, or policies, that will yield acceptable although not
necessarily optimal outcomes regardless of which model within a
certain set is “true.”

This paper is based on the observation that, for the reasons
described above, this form of uncertainty characterizes the present
state of energy modeling, and that the macroeconomists’ insights
and methods are applicable and can yield important insights. Our
focus on technical change is motivated by the long-standing
recognition by both experts and non-specialists that assumptions
regarding the determinants and dynamics of technical change are
a primary driver of model-based projections of the feasibility,
costs, and outcomes of long-run energy policies — especially those
aimed at reducing CO, emissions from the energy sector. Among
current energy models, quite different sets of such assumptions
are maintained - i.e., in different models - and they have
divergent policy implications. Broadly speaking, there are two
paradigms for representing technical change. In the “autonomous”
representation, which can be traced back to Solow’s work on
aggregate productivity in the 1950s, technical change dynamics
are determined exogenously to the market economy [8]. Moreover,
while these dynamics may be influenced by government policy,

the mechanisms of this influence are left unspecified. By contrast,
“endogenous” or “induced” technical change refers to theories,
and their numerical implementations, in which technical change is
explicitly treated, albeit in simplified form, as an outcome of
choices by economic agents acting within markets; in certain
examples, this paradigm also allows for the representation of
government influences such as R&D funding.

As might be expected, these two approaches have quite
different theoretical and quantitative implications for energy
policy. Yet — even after decades of basic and applied research -
there is an absence of consensus within the energy modeling
community regarding the appropriate paradigm for representing
technical change, reflected in a continuing divergence among
different numerical models. The departure point for this paper is
the observation that this state-of-affairs is best characterized as
one of fundamental model uncertainty, and as such can in
principle be addressed by bringing to bear the appropriate con-
cepts and tools developed in macroeconomics.

As noted above, the modeling community does not quantita-
tively rank or assign weightings to sets of models. This state-of-
affairs can be thus be viewed as one of “Knightian uncertainty,”
which refers to uncertainty that cannot be readily described by
probabilities. This perspective also underlies the pioneering con-
tribution of Mclnerney et al. (e.g., [9]) to the analysis of robust
decision-making in integrated assessment modeling, which is one
of our inspirations.

In this paper, we follow the modeling paradigm reflected in
Brock et al. [5-7] and in Hansen and Sargent [2-4], which is to
employ models that are sufficiently simple that they can be
thoroughly analyzed and can facilitate understanding of the basic
concepts. This perspective also reflects the view that, in the words
of a prominent energy modeler, “the purpose of energy modeling
is insight, not numbers” [10], which became a widely-accepted
precept in the modeling community (e.g., [11]).

The paper is organized as follows. In the next section, we
sketch the history and key concepts of model uncertainty and
validity in the energy analysis and policy field. We then further
discuss the representation of technological change in energy
models and its policy implications. Against this background, we
present a model of Goulder and Mathai [12] that, while relatively
simple, nevertheless allows for analysis of several fundamental
issues associated with differing technical change assumptions and
how they affect model-derived policy conclusions. We briefly
discuss technical aspects of the model and the key conclusions
reached by Goulder and Mathai. Next, we consider the Goulder-
Mathai framework from the perspective of model uncertainty, and,
following Brock et al. [6], introduce two decision rules — min-max
and min-max regret — that are applicable in the context of this
form of uncertainty. We briefly review previous and recent
applications of min-max regret in energy and integrated assess-
ment modeling. We then describe a computational version of the
model and discuss its solution under the min-max regret criterion,
comparing this to solutions based on expected cost minimization.
The paper ends with a summary and concluding remarks.

2. Validity and uncertainty in energy modeling

As noted in the introduction, the concept of model uncertainty
entails multiple models of a given system being assigned equal
weight, credibility, or validity, whether explicitly or - as in the case
of energy modeling - implicitly. The prevalence of this form of
uncertainty raises the question of why some form of validation
procedure cannot be applied to compare and ideally rank models
in terms of their likelihood. The answer to this question involves
the history and development path of this area of modeling.
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The 1970s saw the emergence of numerical energy modeling
based on optimization or equilibrium principles with an explicitly
microeconomic perspective [13]. Among their other features, such
models allowed for the prospective analysis of hypothetical
policies much more readily than was the case in a more standard
forecasting approach. At the same time, however, in contrast to
what was then the standard approach to, for example, macro-
economic modeling, this form of deterministic “system simula-
tion” modeling generally did not employ econometric estimation
techniques for assigning values to model parameters [14]. Thus,
concepts of validity based upon the empirical grounding of models
in data through classical statistical procedures were for the most
part not directly applicable.

Nevertheless, during this period numerical model validation
was an active area of research and application; indeed, this may
have reflected the greater complexity of the problems of validation
in the simulation paradigm. A 1978 bibliography on validation of
computer models in policy analysis and the social sciences con-
tained over seven hundred entries, with more than one-hundred
in the category of “energy and electric power models” [15]. More
generally, model “assessment” — both “evaluative” and “non-
evaluative” (e.g., model inter-comparisons) - received substantial
attention as well as resources [16]. For example, the U.S. National
Bureau of Standards convened multi-disciplinary workshops on
energy model validation [17].

Subsequently, however, these efforts attenuated. In the suc-
ceeding decades, a certain tension developed in energy modeling
with respect to criteria for validity and likelihood. Experiences in
the policy arena in the 1970s, including often difficult problems of
communication with decision-makers, led to the emergence
among energy modelers of the philosophy, noted above, of the
rationale for energy modeling being to generate insight into
important issues, rather than numerical results per se [10,11]. For
example, this perspective became the guiding principle for Stan-
ford University’s Energy Modeling Forum (EMF), which pioneered,
and continues to implement, the methodology of structured
energy model inter-comparison analyses [18]. At the same time,
however, the path of actual model development and evolution has
shown a pronounced emphasis on greater detail and complexity,
to an extent indicating that increased model detail per se is seen as
improving likelihood. In many cases, this detail is in the repre-
sentation of energy technologies, and the resulting change in
model output hinges on the particular assumptions made regard-
ing specific technology characteristics - that is, the numbers
describing technologies and their role in the energy system and
its response to policy.

Both of these philosophies are closely related to the use of
calibration rather than estimation procedures for parameterizing
energy models. “Calibration” here refers to the use of external
sources to assign values for elasticities, rates of technical change,
technology cost, and other parameters. As described by Dawkins
et al. [19], under the calibrationist philosophy, the validity of
numerical models is based on their theoretical underpinnings
rather than their empirical likelihood.? This philosophy helps to
explain the prevalence of energy model uncertainty. Economic
theory supports a wide range of practical choices regarding
numerical model structure, functional forms, and other features,
and reliance on calibration in turn allows for a range of equally
plausible numerical realizations conditional on such features

2 «:_.modelers typically see their simulations largely as numerical implemen-

tations of theoretical structures. To them, the widespread use of a particular
structure in the theoretical literature is an indication of its worth, so that they seek
less to test or validate models and more to explore the numerical implications of a
particular model, conditional on having chosen it....” ([19], p. 3762).

having been selected. Thus, different models can yield “insights”
that, all else being equal, are equally credible.

While the majority of energy models are deterministic, there
have been models that take an explicitly decision-making-under-
uncertainty approach [20]. In general, these also reflect the
philosophy we have just described, in that the uncertainty is on
the part of agents within the model, and is conditional upon prior
assumptions regarding model structure and basic parameteriza-
tion choices. Addressing model uncertainty in the sense defined
above, Kann and Weyant [20] proposed a framework for applying
uncertainty analysis to deterministic models to elucidate, e.g., the
sources of inter-model differences. This framework has not been
adopted among energy modelers, however, and well-known
reasons for inter-model output differences, such as contrasting
choices pertaining to structure and parameter values, continue to
be acknowledged qualitatively without being quantified or ana-
lyzed in depth. (See, for example, [21].) The study of Fischer and
Morgenstern [1] is a rare exception that proves this rule; they
performed a regression analysis in an attempt to quantitatively
gauge the importance of various model features in determining
inter-model output variation. More recently, the U.S. Congressional
Research Service conducted an insightful and illuminating inves-
tigation of multiple models’ projections of the costs of long-run
CO, abatement policy [22]; this analysis is in effect an effort by the
U.S. Congress to address energy model uncertainty in the context
of a major policy issue.

3. Modeling energy-related technological change

Early energy modeling studies emphasized the importance of
the mechanisms of substitution - i.e., between energy and non-
energy economic factors, including capital - in determining the
role of energy in the aggregate economy [23]. However, events of
the 1970s appeared to demonstrate the importance of overall
energy productivity in a manner analogous to that of labor
productivity. That is, consider a stylized economy-wide production
function F(+) giving gross output Y, as a function of capital K,
labor L;, energy E;, and factor-augmenting technical change:

Y. =F(afK;, atLs, ofEy). (1)

If dal/dt > 0, then over time, all else being equal, a given input
level of factor i will yield a progressively greater level of output.
Having been proposed for macroeconomic labor-output relation-
ships by Solow and Swan in the 1950s, this type of relationship
suggested itself to explain the aggregate “de-coupling” between
energy and economic growth that occurred in the 1970s [8,24].

This hypothesis was not completely uncontroversial; Hogan
and Jorgenson [25] argued that, on the contrary, the de-coupling
phenomenon could be explained in terms of aggregate substitu-
tion between energy and other factors, resulting from energy price
shocks. Nonetheless, the need to calibrate numerical energy-
economic models to observed trends, combined with the simpli-
city of factor-augmentation, gave rise to widespread adoption of
this type of representation. Colloquially, the term “autonomous
energy efficiency index” or “AEEI” came into common use to refer
generically to parameters such as of above. Variations on this
mathematical representation were also developed for models
without production function-based structure.

That this approach was in effect a reduced form for the
complex, not-well-understood dynamics of energy-related techni-
cal change was generally if tacitly recognized. However, the advent
of the “new growth theory” as developed by Romer [26,27], Lucas
[28] and others in the 1980s and 1990s indirectly weakened its
plausibility. The new growth theory insight that technological
innovation is to a significant extent a market phenomenon,
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responsive to economic incentives, and its practitioners’ develop-
ment of mathematical tools to represent it in aggregate models,
provided grounds for questioning the standard autonomous tech-
nical change assumptions in energy models as well as indicating
how these assumptions might be modified.

While this issue entails a number of challenging theoretical and
empirical problems, its policy relevance is quite intuitive. The funda-
mental policy application of energy models is to project how govern-
ment actions such as GHG emissions abatement measures will affect
the energy system and the economy. Such actions are generically of
several types. The first is direct regulation such as technology adoption
requirements. In a literal sense, this is not an “autonomous” change,
although depending upon the level of model detail, among other
considerations, it can be approximately captured by adjusting AEEI-
type parameters. In equilibrium models, however, this technique
raises questions of interpretation, since it could imply that the
government can simply impose productivity increases in the economy.
The second type is promotion of energy-related technical change
through government or government-sponsored R&D. Here again, the
assumption of autonomous technical change poses a prima facie
hurdle, since R&D is fundamentally a production relationship between
inputs of factors such as scientific or engineering expertise, and
outputs such as patents or actual technologies.

The third type of government action is market- or price-based
interventions - especially, emissions taxes or emissions cap and trade
regimes. In a model with autonomous technical change, the only
possible response to a perturbation such as an emissions tax is
substitution away from emissions-intensive energy sources on the
part of consumers and firms - technical change is by assumption
unaffected. In particular, the possibility that energy price changes
might result in energy-or emissions-reducing innovation is ruled out.
Such innovation could arise, for example, from private firms under-
taking R&D aimed at creating technologies that would yield profits
given a price on emissions. Given that such “induced” or “endogen-
ous” innovation or technical change would yield technologies enabling
emissions abatement (for example) at lower cost than existing
technologies, the omission of such price-driven innovation would
arguably result in systematic over-estimation of the costs of policies.

Over the past 15 years, research on induced technical change
(ITC) in energy models has proliferated; Gillingham et al. [29] is a
thorough and insightful review. A number of new computational
models have been created incorporating representations of ITC,
such as Buonanno et al. [30] and Popp [31]. Underlying principles
have been analyzed, including the cost-bias problem with AEEI-
based models [32,33]. This activity has not, however, resulted in
either a convergence of energy modeling approaches to ITC or,
perhaps more importantly, in changes in the treatment of techni-
cal change in established models. That is, the use of AEEI-type
representations remains common, and in particular continues in
the most firmly established (and influential) energy as well as
integrated assessment models in the U.S.

4. A simple integrated assessment model

In a widely-cited paper, Goulder and Mathai [12] presented an
elegant theoretical framework to capture essential features of the
relationship between autonomous and induced technical change,
and the consequences of technical change assumptions for optimal
policies of CO, abatement, in a partial equilibrium setting. They
analyzed cases based on both a cost-effectiveness criterion applied
to meeting a CO, concentration target, and a cost-benefit criterion
when abatement costs are weighed against damages from climate
change. In each of these two cases, they further distinguished
between technical change induced by R&D investment as well as
by learning-by-doing. Among models that have appeared in the

literature dealing with technical change and CO, emissions abate-
ment, the Goulder-Mathai model is distinguished by the combi-
nation of being both sufficiently simple to transparently represent
key mechanisms of the economics of CO, abatement and technical
change, and powerful enough to allow their exploration in a
manner that yields insights. These two aspects are reflected by
the influence that the model and Goulder-Mathai’s analysis have
had in the literature. For these reasons, it is an ideal framework for
our purposes.

To adapt the Goulder-Mathai (hereafter, G-M) framework to study
model uncertainty, we will focus specifically on the case of cost-
benefit analysis with learning-by-doing. The model is as follows. The
setting is deterministic, continuous-time, infinite-horizon optimal
control. In the absence of abatement, CO, emissions are assumed to
follow an exogenously given baseline time path E?. Emissions con-
tribute to an atmospheric carbon stockS;, resulting in damages D(S;).
Emissions abatement A; can be undertaken at a cost C(A;, Hy) that
depends jointly on A; and a stock of “abatement knowledge” H;. This
cost function is assumed to be twice continuously differentiable,
strictly increasing in abatement, and strictly decreasing in knowledge,
and is also assumed to be strictly convex in A, 0*C /0A? >0, and to
exhibit decreasing marginal costs of abatement with respect to
knowledge, ¢*C/dA.0H; < 0.

The atmospheric carbon stock follows a standard linear decay
model, augmented by baseline emissions and abatement:

4S = —eS+E)—A )

with initial conditionSg =S(0). The damage function D(S;) is
assumed to be strictly increasing and strictly convex.

The dynamics of technical change are characterized as follows.
A knowledge function ¥(H;,A;), increasing in both H; and A,
captures the idea that undertaking abatement results in increased
knowledge about abatement. This function is weighted by a
parameter x and combined with a term representing standard
autonomous, in this case knowledge-increasing, technical change,
giving the equation-of-motion for the knowledge stock

4 Hy = aHy +xP(He. Ay, 3

with a > 0and initial condition Hy = H(0). The parameter x controls
the influence of induced technical change: x = Orepresents the
case of autonomous change, and « > Oinduced. G-M treat x as a
continuous parameter in their theoretical analysis, while in their
numerical examples focus on the two cases k=0, k= 1.

The decision criterion is to minimize the present value (dis-
counted) cost of abatement plus damages. Thus, the complete G-
M model in this case is

n/liin Jo  [C(A¢, H)+D(Sp)le—#*dt

s.t.

%Ht =aH+«¥(H,Ar)

48 = —eSi+E) A

Hog, So given

At H:, S > 0. 4)

G-M derive first-order optimality conditions for this model to
analyze the implications for the cost-minimization problem of
assuming ITC compared with solely autonomous technical change.
By simple inspection, it is clear that the presence of ITC -
represented by x >0 - decreases the cost of abatement. This is
because the cost function is decreasing in knowledge capital H; - i.
e, 0C/oH; <0 - and it is assumed that there are no costs associated
with the learning effect.> Moreover, assuming that damages are a
convex function of the carbon stock, the time path of the optimal
tax falls with the introduction of ITC. In addition, ITC has an



366 Y. Cai, A.H. Sanstad / Computers & Operations Research 66 (2016) 362-373

ambiguous effect on initial abatement Ag, but increases the level of
cumulative abatement over the entire time horizon.

5. Extension to model uncertainty analysis

The G-M analysis can be viewed in a stylized sense as
exemplifying the modeling methodology described above, in
which multiple models exist to describe the same system or
phenomenon. To do so, we interpret the parameter xas an index
determining a family of models. The two values k=0 and x=1
succinctly define “no ITC” and “ITC” cases, but any « > 0 defines a
model with some level of ITC. Any other information being absent,
this perspective abstractly characterizes the circumstance of mul-
tiple models yielding different policy conclusions, but in effect
assigned equal plausibility by the modeler. Thus, the results in
each case would be informative to a hypothetical decision-maker,
but the manner in which they might actually be used for decision-
making is left unspecified. That is, imagine in the present case that
an individual or entity sought to decide upon an intertemporal
policy of abatement and investment using the G-M model,
including the dimension of parametric ITC. How should this
be done?

One approach would be to assign a probability distribution to «,
and convert the problem into one of the expected cost minimiza-
tion. The problem is how to determine an appropriate distribution,
or put differently, how to generate priors for the value of this
parameter. As discussed above, years of research on ITC in general
in energy-environmental modeling have not resulted in consensus
regarding the important issues — how it should be modeled, the
values of key parameters, and so forth. With a particular model
such as G-M'’s, it would seem possible to conduct empirical
(econometric) analysis to quantify x. In practice, however, this
has proven exceptionally difficult.* Even the standard approach of
calibration (as opposed to estimation) of numerical models is
challenging in the case of ITC, and moreover a calibration approach
would not provide stochastic information to support assignment
of a probability distribution.

The conceptual and practical difficulties associated with deter-
mining model priors are among the issues discussed by Brock et al.
[6] in motivating a non-Bayesian approach to dealing with model
uncertainty (in their analysis, in a macroeconomic context). Non-
Bayesian decision rules allow a policy-maker to explicitly incorpo-
rate multiple models or model specifications without needing to
specify probability distributions, or specific probability magni-
tudes. While individual models may be of optimization type, the
overall decision problem is not - instead the goal is to make
decisions that will yield at least acceptable outcomes irrespective
of which candidate model may be correct - this is a form of
robustness to model uncertainty.

Both the technical model details and the economic policy issues
studied by Brock et al. differ from those associated with the G-M
analysis. Nevertheless, the underlying idea of fundamental model
uncertainty and non-Bayesian methods to address it are eminently
applicable to the technological change problem. We next describe
the formulation of this problem - as represented by the G-M
optimization model - in a non-Bayesian framework, analogous to
the Brock et al. macroeconomic analysis. Intuitively, we interpret
the G-M framework as defining a class or family of “candidate”
models parameterized by «, but now the different members of this

3 With additional assumptions, the sign and magnitude of the cost reduction
resulting from ITC can also be inferred by applying a dynamic envelope theorem
[34].

4 Pizer and Popp [32] discuss both the theoretical and the empirical challenges
in modeling energy-related technical change.

model set, and their policy implications, are not to be just
considered by a decision-maker, but rather used explicitly in a
precisely defined way.

5.1. Min-max

Applied to model uncertainty, the min-max criterion, intro-
duced by Wald [35], bases the decision upon the “worst-case”
model - in the present context, the model associated with the
highest cost. For notational brevity, define

(A, Ht, St) = C(Ar, Ho)+D(Sy). )

A min-max framing of the ITC problem using the G-M model is

n}in {max/ Q(A;, H, Sp)e 1t dt}
t  Jo

s.t.
4 Hy = aH+x¥(He, A& Se = —eSe+Ef —Ar, (6)

subject to initial conditions and non-negativity constraints.

Heuristically, we interpret this problem and characterize its
solution as follows. Assume that the support of « is a closed
interval, x € [0, 1]. Then note that abatement trajectory {A;} that is
admissible for one value of «in this interval will be admissible for
all values. Now, given admissible {A;}, as x ranges over its domain
the path of H; also varies, and therefore the time-path of values of
Q(A¢, Ht, Sp) varies as well. So, the discounted cost is maximized
over this set, as a function of x (continuing to hold the A; trajectory
fixed in the space of trajectories). This maximization yields a
function of {A;}, which is then minimized over all admissible such
pairs. Regarding the solution, note first that because the dis-
counted cost decreases in «, the “inner” maximum is attained at
x=0. Then the “outer” problem is simply the cost minimization
with autonomous technical change. Thus, the solution to the min-
max problem corresponds to the “worst” case, in which no cost
reduction is available from ITC.

5.2. Min-max regret

The idea of the min-max regret (MMR) criterion is to amelio-
rate the conservatism of the min-max criterion’s dependence
upon the worst case. The use of this criterion in energy modeling
was pioneered by Loulou and Kanudia [36] in a regional-scale
linear programming (LP) model. There has recently been an
increase of work on this topic. Li et al. [37], Dong et al. [38], and
Dong et al. [39] apply the regret criterion in different variations of
LP power system modeling. Iverson [40] applies MMR in a version
of Nordhaus’s well-known “DICE” integrated assessment model,
while Hall et al. [41] compare the results of MMR with an “info-
gap” analysis as approaches to robustness analysis in DICE. Anthoff
and Tol [42] analyze several decision criteria including MMR using
the “FUND” integrated assessment model.

In the present context, for a given policy - in our case, a
trajectory {A;} - the “regret” associated with a model - indexed by
a value of « - is the difference in discounted cost between that
associated with {A;} and the cost of the optimal policy for that
model. For a givenx, let A, H},S; be the cost-minimizing control
and state variables subject to the constraints listed in Eq. (4), and
define

oo
M*(x) = /0 Q(A*,HE.SH)e " dt. (7)
For given A; and x,we can re-write the “regret” more succinctly as

RAt, k) = /OOOQ(At,H[,S[)e"”[ dt — M*(x). (€]
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Then the overall min-max regret problem is

IrAin max R(A¢, x)s.t.
t K

%Ht =aH;+«¥(H.,S;)
48 = —eSi+E) —A.. C)

5.3. Expected cost minimization

We noted above the complications involved in solving the
model using expected cost minimization. However, it will be
instructive to compare the non-Bayesian approach to model
uncertainty represented by min-max regret solutions with the
results of standard expected cost minimization applied to this
model. In such a formulation, we assume that the uncertainty in «
is captured by a probability distribution, and the model described
by Eq. (4) above becomes

n}‘in E, fooo .Q(A[,Ht,St)E’/” dt

s.t.

4 H;=aH+x¥(Hi,A) Vxel0,1]

%S[ = —sSH—E? _Af

Hy, So given

A, H,5¢ >0, (10)

where E is the expectation operator. In the following sections we
will implement this solution concept using, in turn, two different
distributions for «, to explore the dependence of the result on this
assumption. This exercise is loosely related to the concept of
“ambiguity aversion,” which refers to a decision maker’s model
incorporating probabilistic uncertainty regarding one or more
parameters, but the decision maker being uncertain as to which
of several candidate distributions is the correct one to assign to
these inputs [43,44]. A theory of decision-making under ambiguity
has been developed to analyze the positive and normative impli-
cations of this type of model uncertainty.

5.4. Theory and computation

Notwithstanding this model’s simplicity, analyzing MMR solutions
is a problem for which computation is essential. The analysis of min-
max solutions to optimal control problems has a long history; for
example, Salmon [45] and Papageorgiou and Yannakakis [46] are
early, and more recent, examples, respectively. The min-max regret
problem in an optimal control setting, however, has not been the
focus of research. The literatures on sensitivity analysis and sub-
optimality in optimal control dating back to the 1960s contain insights
and techniques that are relevant to this problem. For example,
Rekasius [47] and Durbeck [48] proposed Lyapunov-type techniques
for estimating bounds on sub-optimal solutions using the optimal-
value function, anticipating more recent work in the area of “dissipa-
tion inequalities.” Witsenhausen [49] is an interesting attempt to
develop a general theory relating uncertainty and sub-optimality.
These two topics were also jointly analyzed by Wierzbicki [50], in
another general theoretical treatment, as well as by Ronge [51].
Nevertheless, theoretical tools directly applicable to the optimal
control MMR problem are not available. Thus, computational methods
provide the means for obtaining and understanding MMR solutions in
the present case. This illustrates the important fact that such methods
can be highly useful for gaining insight even in the context of
relatively simple models.

6. Computational model forms
6.1. Functional forms

To implement and solve the G-M model numerically, we
switch to discrete time using the following functional forms and
taking parameter values from Goulder and Mathai [12].

Abatement cost:
AT 1
(B0 —a)™ He

with Mc =83, ac, =3,ac, =2. In addition, as described in
Section 7 below, we analyze several cases with H} in the
denominator.

Damage function:

D(St) = MpS™, (12)

where Mp =0.0012 and ap =2.
Technological change - knowledge function:
The knowledge production function is

¥(Ie, He) = Myl HY, (13)

where y=0.5,¢ = 0.5, and Hy = 1. As described in Section 7
below, we first set My = 0.0022, but then also analyze cases
with My = 0.022 and My =0.22.

Technological change — dynamics:

The rate of autonomous change is assumed to be 0.5% per
annum, i.e., « = 0.005.

Heyp1=(+a)H:+xM,HA?. (14)

C(At, H) =Mc a1

Carbon stock dynamics:

Ser1=Se+B(ED—Ac) 65t —Sre), (15)

where g =0.64, § =0.008,Sy = 360, and the pre-industrial con-
centration is Spgr = 278 parts-per-million by volume (ppmv).

The baseline emissions abatement scenario is “Representative
Concentration Pathway (RCP) 8.5, generated using the
intermediate-complexity climate model MAGICC 6 [52,53].

6.2. Min-max regret

We first note that in the discrete-time formulation, the min-
max model becomes

o0
min max E Q(Ae, H, Sp)e="t
A (0

s.t.

Hii1=(+a)H;+xM,HA!

Stv1=Se+B(Ef —Ac) —8(Sc — Spre)

A, He,S: > 0. (16)

As in the theoretical, continuous-time version of this problem,
the solution is immediately seen to be at x=0, because the
discounted cost declines monotonically as « increases, for any
given abatement path A;. We therefore turn our attention to the

min-max regret problem. To formulate a computational version,
we first define

fo= H}in <i Q(At, He(x), 506"”) . (17)
t\t=0
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Then the regret function is

oo

R(A,H(x),S,x) = ( Q(A;, Ht(K),Sr)eﬂ[> —f(x), (18)
0

t=
where A, H(x) and S respectively represent the paths of A;, H(x)
and S; over time, and the discrete-time min-max regret model is
rr}lin max R(A, H(x), S, )

s.t.

Hip1=(1 +a)Hf+KMV,H;/'A{

Sts1=Se+B(E—Ac) —(S: — Sere)

At,Ht,S[ >0. (19)

For computational implementation, we discretize x over the
unit interval, with valuesk;...,x,, so that the objective becomes
min max R(A,H(x),S, ). (20)

At ke {Kki,....kn)

Next, we transform this to a more standard optimization form
as follows:
min 4

13

S.t.
AZR(A,H(i),S,Ki),iz 1,...n
Hei1i=(+a)H i+cM,H AL i=1,....n

Sex1=5t +ﬂ<E? —At> — (St — Spre)
At,Hi,S5¢ >0, 1)

where H? represents the path of knowledge with the given «;, i.e.,
{H ;i :t=0,1,..}. Numerically we replace the infinite-horizon
problem by a finite but large horizon one. For example, in our
numerical implementation in Section 7 below, we use 490 years as
the horizon because with discounting the present value of costs
incurred after 490 years is negligible. Expected cost minimization

One key difference between the expected cost minimization
model and the min-max regret model is that the former has to
assume a prior distribution over the uncertain parameters while
the latter assumes no prior distribution. Adopting our notation to
reflect the dependence of H; on «, a discrete-time formulation of
this version of the expected cost minimization model is

min E, ) (A, Hi(x). S)e ™"
¢ t=0

s.t.

Hi ()= (1 +a)Ht(K)+KM,,,Ht(K)‘/’A{ Vke[0,1]
See1=Se+p(EL—Ac) —6(S: — Sore)

A, He,Se > 0. (22)
Assuming that the distribution of « is continuous, the expecta-

tion in Eq. (22) becomes an integration and then can be approxi-
mated using a quadrature rule, so we transform the model (22) to:

n 00
n}qinZW,( OQ(At,Ht,i,S[)e‘/’f>

i1 \i=
s.t.
Hip1i=(1 +0)Ht,i+KiMwH([/f,-A¥, i=1,..,n

Ser=Se+B(E)~Ac) —8(Sc — Sre)
At,H; i, 5 =0, 23)

where «; are quadrature nodes and w; are quadrature weights. The
best choice for the quadrature nodes and weights depends on the
integrand function and the prior distribution. (See Judd [54] and
Cai [55] for detailed discussions of numerical integration, includ-
ing the issues discussed here.) For example, the Gaussian—-Hermite

quadrature rule is used for an expectation with normal distribu-
tion. Since x is bounded in [0,1], we choose the composite
Simpson’s rule with an approximation error of order h* for smooth
integrand functions, while the traditional composite midpoint rule
has an error of order h?, where h is the step size of quadrature
nodes. As in the min-max regret case, in the computation of
expected cost we approximate the infinite-horizon sum in the
objective of the Eq. (23) by a finite-horizon sum because, due to
discounting, cost terms in the long run have virtually no effect on
the optimal solution.

Monte Carlo methods could also be used for approximating the
expectation in the objective of Eq. (22), and their transformed
models have the same form of (23), while x; are simulated nodes
and w; are 1/n, and it has about nT constraints where T is the finite
horizon for approximating the infinite horizon problem. We know
that Monte Carlo methods will have only 1/¢/n accuracy. This
implies that if we want to have 0(10~%) accuracy, we will need
about 10'2T constraints that make it infeasible to be solved.
However, the composite Simpson’s rule has much higher accuracy
O(Mh*) where h = 1/(n—1) and M is a constant depending on the
smoothness of the integrand function, so usually it will have
0(10~%) accuracy by letting n=101, and then the model (23)
has about 101T constraints and can be easily solved with a modern
optimization solver.

As presented in Section 7 below, we implemented the expected
cost minimization model in two ways:

® Uniform distribution: We assumed that « is uniform and
continuous on [0, 1]. The quadrature nodes «; are equally spaced
in [0,1] with an odd number of nodes, n. The quadrature
weights are given by Simpsons’ rule: w;=w,=h/3,
Wy=Wg=..=Wy_1=4h/3,and w3 =ws=...=w,_, =2h/3.

® Beta distribution: We assumed that the prior distribution of « is
Beta, with density

x* 11 —xy 1,

fa,p)= x€[0,1], 24

B(a, p)
where a > 0 and g > 0 are shape parameters and B(e, j) is the
Beta function,

(a—DI(B—1)!
(at+p—1)

In this case, the mean of « is 1/(1+/a). The quadrature nodes
x; are equally spaced in [0,1] with an odd number of nodes, n. The
quadrature weights are derived from the Simpsons’ rule:
wy =fki;a, Hh/3, Wn=f(xkn;a, /3, Woi =4f (kzi;a.Hh/3  for
i=1,.,(n—1)/2, and Wy, 1 =2f(xzi+1;a,ph/3 for i=1,..,
(n—3)/2.

When we choose a large number of quadrature nodes, the
model (23) could become too large to be solved. Even if we choose
a smaller number of nodes, obtaining a solution could still be quite
time consuming for problems with many state variables. (In this
paper, we choose n=101 and the calculations are fast because the
model has only two state variables). The following deterministic
model, in which « is assigned its mean value &, is an example of an
often-used alternative way to estimate the solution. We note,
however, that our numerical results show that the resulting
approximation to the solution of the expected cost minimization
problem may be very coarse in this case:

B(a.f) = 25)

min Q(Ar, Hp, Sp))e "t
ni ;< (A, He, S0)

s.t.
H; 1 =14 a)H+7M,H Al
Sf+1 = st +ﬁ<E? _A[> — 5(5[ _SPRE)
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A, H;, St > 0. (26)

Although this model (26) may provide a less-accurate solution
than model (23) (i.e., with respect to the underlying model’s true
solution), it is also the case that solving model (26) is much faster
than solving model (23), because (26) has only O(T) constraints
while (23) has O(nT) constraints, where T is the finite horizon for
approximating the infinite horizon problem, and n is the number
of quadrature nodes used in (23). Thus, the use of model (26) can
still be warranted on computational tractability grounds as well as
for the insight into underlying model structure that may be gained
by using and comparing the results of both solution strategies.
This is illustrated in our results in the following section.

7. Numerical results
7.1. Two uncertain parameters

For all of our computational modeling, we use annual time
steps from year 2010 to year 2500. We recall that the baseline
emissions abatement scenario is “Representative Concentration
Pathway (RCP) 8.5” [52,53]. We use CONOPT [56] in the GAMS [57|
environment to solve the models. For the model (23), we use the
composite Simpson’s rule with n=101 equally-spaced quadrature
nodes over [0,1], i.e., x; = (i—1)h for i=1,...,101, with h=1/(n—1).
We also note that discretization of x over the unit interval allows
us to extend the results of G-M, who analyzed the two values x =0
and k=1.

In all our numerical results, there is a “turning point” - a
maximum abatement level - at year 2150. This is a consequence of
our use of the Representative Concentration Pathway 8.5 emissions
scenario, which embodies this specific maximum.

Fig. 1 presents the basic comparison of abatement paths in the
solutions of the G-M model with autonomous and induced
technical change, respectively, and with the min-max regret
criterion. It shows that the latter decision rule in a sense “bal-
ances” between the two polar technical change assumptions.

This initial comparison raises several questions. Is the approx-
imate symmetry of the outcome - i.e., with the min-max regret
solution roughly “midway” between the two standard solutions —
a consequence of the decision rule, the particular characteristics of
the model, or some combination? How is the “spread” of abate-
ment paths - that is, the difference between the induced and the
autonomous cases, respectively - related to our assumptions?
Finally, as per our discussion above, how does the non-Bayesian
solution compare with a conventional expected cost-minimization
solution?

In our next set of results, we expand our set of comparisons in
two ways to address these issues. First, we solve the model for
additional specifications of the knowledge production function -
specifically, recalling that

Hep1 = (4a)H; +xM,H?AL, 27)

and that My =0.0022 in the results displayed in Fig. 1, we also
solve for My =0.022 and My = 0.22. For any magnitude of « > 0,
these higher values imply a great relative contribution of induced
technical change relative to autonomous in determining the level
of the knowledge stock H; in each period. The induced, autono-
mous, and min-max regret solutions are computed for each of
these three values.

Second, we also now solve the expected cost minimization
version of the model assuming a uniform distribution for x as
described in Section 6.3. For this case also, we solve for the three
values of My, as well as for the model with « fixed at its
mean value.

Abatement when Mw=0.0022
9 :

Gigatons of carbon

““““ G-M model with autonomous T.C.
2r ] G-M model with induced T.C.

—— minmax regret solution

1 L L L T
2020 2040 2060 2080 2100 2120 2140 2160 2180 2200
year

Fig. 1. Abatement paths in computational G-M model with induced and autono-
mous technical change (minimum cost), and with min-max regret criterion.

The results are shown in Fig. 2. In the first panel, we see that
the min-max regret, expected cost, and minimum cost with « set
to its mean value essentially coincide exactly. The second and third
panels show that increasing the value of My not only results in
substantial divergence of abatement paths overall, but also an
overall increase in their average magnitude. Moreover, it is inter-
esting to note that the min-max regret solution with higher values
of My becomes relatively “conservative” - i.e., lower in magnitude
than all of the other cases except autonomous technical change.

In our next set of computations we explore the effect of
changing the prior distribution on «, from uniform to Beta (as
described in Section 6), with two different combinations of values
for the shape parameters. The results are shown in Fig. 3. Overall,
the magnitudes of the abatement paths are comparable to those
shown in Fig. 2 with a uniform prior. It is interesting to note that in
the My =0.022 case, the min-max regret solution exceeds both
the optimal (minimum expected cost) and mean solutions with
Beta(1,3) until the maximum point of each, then crosses below the
mean, but not the optimal, solution.

To further explore the interactions between the structure of the
model and the solution concept, we next conduct the same set of
computations but with increased curvature in the cost function -
specifically, with the knowledge stock H; raised to the 4th (rather
than the 1st) power:

AT 1
(E0—n) ™ HE

The results are shown in Fig. 4. Again we see a divergence
among paths as My increases, as well as an even greater increase
in the overall magnitudes of abatement - that is, increasing the
curvature of the cost function raises not only min-max regret
abatement, but also optimal abatement in every case. It is also
interesting to note that the abatement paths for induced and mean
technical change, respectively, are essentially the same for the
highest value of M.

C(Ai, H) =Mc (28)

7.2. Multiple uncertain parameters

In the previous subsection, we conducted sensitivity analysis
over two parameters: My and the exponent of the power function
of the knowledge stock H; in the cost function, denoted d. In the
analysis, we computed solutions of various methods including the
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Fig. 2. Abatement paths in computational G-M model - varying Mywith induced and autonomous technical change (minimum cost), min-max regret criterion, and
expected minimum cost with uniform prior on «.
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Gigatons of carbon

2050 2100 2150 2200
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Fig. 3. Abatement paths in computational G-M model - linear H; in cost function, and varying My with induced and autonomous technical change (minimum cost), min-
max regret criterion, and expected minimum cost with two instances of Beta prior on «.
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Fig. 4. Abatement paths in computational G-M model - “quartic” H; in cost function, and varying My with induced and autonomous technical change (minimum cost), min-

max regret criterion, and expected minimum cost with uniform prior on «.
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Fig. 5. Abatement paths in computational G-M model - min-max regret criterion
with three uncertain parameters (x,M,,d), and sensitivity analysis of min-max
regret criterion with only one uncertain parameter «.

min-max regret method for each My € {0.0022,0.022,0.22} and
de{1,4}.

In applying the min-max regret approach, we assume that the
hypothetical decision maker knows neither the distribution of the
uncertain parameter « nor its mean, while the other methods
assume that the decision maker knows the distribution or its
mean. If we assume that My and d are also uncertain, and the

decision maker does not know their probability distributions (for
simplicity, we assume that My €{0.0022,0.022,0.22} and
d e {1,4}), we then extend the previous min-max regret analysis
over one uncertain parameter to solve the problem with multiple
uncertain parameters. Now, the abatement cost function is also
dependent on d, i.e.,

oAt 1
(E0-a)  HE

and we let Q(A¢, He, St, d) = C(A¢, He, d)+ D(S;), where the transition
law of H; depends on x and My. Similarly, we let

C(At,He, d)=Mc (29)

f(x,M,.d) = n}in (i Q(Ai,He(x,M,),S:, d)e”t>, (30)
t \t=0

so that the regret function is

(A H(K‘ M,/, S K, d <Z At,H[ K' M,/,) St,d)e"t> —f(K)MV,,d).

(€2

Thus, our min-max regret model becomes

min 4
s.t.
3= R(AHY.S kM, ;d), i=1...n. j=1.2.3, d=1.4
Hei1ij = +a)He;j+xM, H“ﬁ i=1,.,n, j=1,2,3
Ser1=Sc+B(EL—Ac) —6(Se —Sore)
A, Hjj, Se =0, (32)

where H% represents the path of knowledge with the given «; and
Ml’/j, ie., {H[J'J' :t=0,1, }
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Fig. 5 shows the solution of the min-max regret method over
these three uncertain parameters (the red solid line), and com-
pares it with the solution of the min-max regret method over only
one uncertain parameter, x, with various given values of My and d.
The results show that the sensitivity analysis over My and d
cannot give one robust policy for decision makers, while the min-
max regret solution with these three multiple uncertain
parameters does.

8. Conclusion

This paper has focused on fundamental model uncertainty in
the study of CO, emissions abatement from the energy system, has
analyzed a non-Bayesian approach - the minmax regret decision
rule — to address this uncertainty, and has compared the results
with those obtained from expected cost minimization. Our find-
ings demonstrate the insights available from using a non-Bayesian,
robust decision-making approach to the technological change
problem; it shows that interpreting the technical change problem
in terms of model uncertainty in principle enables a policy-maker
to formally incorporate the assumptions of both autonomous and
induced technical change in an integrated manner, without having
to overcome the difficult problem of assigning numerical prior
probabilities to these alternative representations.

As in many other fields of application, computational modeling
has become an indispensable analytical methodology for energy
and environmental policy. The development and widespread
adoption of energy modeling over the past several decades
accompanied by the attenuation of serious, sustained work on
model validation, however, has arguably given rise to fundamental
epistemological issues, with significant implications for model-
based policy analysis, that have yet to be systematically addressed.
The emergence of multiple models of implicitly equal validity,
without formal guidance to policy-makers regarding their joint
application, is an important example. If this state-of-affairs reflects
the persistence of irreducible uncertainties in our understanding
of the energy system and its relationship to the economy, then
developing methods to enable policy makers to rationally deal
with it is a high priority. The pioneering work of macroeconomists
on model uncertainty provides a compelling starting point for
such an effort. The work described in this paper is only a modest
first step, but we hope to have demonstrated both the importance
and the feasibility of bringing the macroeconomists’ insights and
techniques to bear on energy modeling.
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