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A Multi-Modal Analysis of Climate-Economics

⇤

Emmanuel Souganidis†

May, 2013

Abstract
We investigate the qualitative properties of the climate-economic growth model

introduced by Brock et al., (2012). We assume that the mean annual distribution
of solar radiation energy and the fraction of incoming radiation flux absorbed by the
surface have a specific form, and perform a rigorous mathematical analysis when the
time scale for temperature is taken to be faster than that of carbon. We analyze the
impact of moving welfare weights away from Negishi weights by introducing a simple
welfare weights function. We perform a qualitative analysis on the output elasticities
of carbon and capital, and examine the way thermal di↵usion a↵ects local economic
variables and taxes at the equilibrium. We then evaluate the robustness of the two-
and four-mode forms in the context of the temperature model.

1 Introduction

We investigate the qualitative properties of the climate-economic problem introduced by
Brock et al., (2012). In their paper, Brock et al., (2012) couple a spatial climate model
with a model of economic growth. They follow North (1975a) and write the mean annual
distribution of solar radiation energy and the co-albedo function, i.e., the fraction of incoming
radiation flux absorbed by the surface, in a two-mode form. They then assume that the
solution of the climate model is of the same (two-mode) form and continue with their analysis.

In this paper, we analyze the validity and significance of using di↵erent functional forms
for the mean annual distribution of solar radiation energy and the co-albedo function by
comparing their impact on the economic model. Using input functions of two- and four-
mode forms, we obtain, under the assumption that temperature grows faster than carbon,
the exact solutions of the climate problem in a mathematically rigorous way. In doing so
we observe that the exact solution in the two-mode case is given by four modes1, and the
solution in the four-mode case is given by eight modes.

⇤A Bachelor thesis submitted to the faculty of the University of Chicago Department of Economics for
honors with the degree of Bachelor of the Arts in Economics. The author would like to thank L. Hansen
for supervising this project. He would also like to thank W. Brock and E. Anderson for many valuable
conversations and suggestions regarding this project.

†Associate Economist, Federal Reserve Bank of Chicago. The opinions expressed herein are my own and
do not necessarily represent those of the Federal Reserve Bank of Chicago or the Federal Reserve System.

1The presence of the fourth mode in the solution of the temperature problem with two-mode form input
functions was previously neglected in Brock et al., (2012).
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We use these solutions with the economic problem in Brock et al., (2012) to evaluate the
change in optimal taxation policy as one moves away from Negishi welfare weights (Stanton
(2009)). We determine the dependency of temperature and damages on the rate of di↵usion
and analyze the qualitative impact of the output elasticities of capital and carbon on the
socially optimal quantities at the steady state. We evaluate the robustness of the two- and
four-mode forms and find that the impact of thermal di↵usion on the spatial distributions
of temperature and damages behaves di↵erently for the two cases. We observe that, as the
rate of di↵usion increases, the area in the world for which damages are reduced increases for
the two-mode case and decreases for the four-mode case. This di↵ers from the observation
in Brock et al., (2012) that the size of the area does not change.

In their paper, Brock et al., (2012) determine an optimal mitigation policy to correct for
the climate externality in both spatially uniform and spatially di↵erentiated settings. When
international transfers are allowed, their results indicate that a spatially uniform carbon tax
can emerge with the implementation of Negishi welfare weights (Stanton (2009)). Alter-
natively, Chichilnisky and Heal (1994) note that in the absence of international transfers,
a spatially uniform optimal mitigation policy is not possible. Here we introduce a simple
welfare weights function and analyze the impact of moving away from the Negishi weights.
Following Brock et al., (2012), we also investigate the impact of thermal di↵usion on the
spatial distribution of fossil fuel taxes given our welfare weight function in the polar case of
closed economies. Our results confirm that an increase in the rate of thermal di↵usion will
decrease the optimal carbon tax rate for countries close to the equator and increase it for
those further away.

We then evaluate qualitatively the impact of carbon and capital output elasticities on
the steady state distributions of temperature, damages, capital, and social price of carbon.
These output elasticities can be used to represent various climate-economic policies. For
example, an increase in the output elasticity of carbon would indicate a movement away from
capital-heavy production and more towards carbon-heavy production. Thus, when viewed in
the context of industrial policy, our results express the relationship between environmental
regulation and the social planner problem.

Our final objective is to evaluate the robustness of the two- and four-mode forms of the
mean annual distribution of solar radiation energy and the co-albedo function in the context
of dynamic paths and solutions to the social planner’s optimal control problem presented
in Brock et al., (2012). As North et al., (1981) have shown in discrete settings, the static
temperature distribution at any fixed point in time is well approximated by a two-mode
expansion. Our results confirm that the two-mode form adequately models the steady state
distributions when compared to the four-mode form through a distance metric. We therefore
believe this to be one of the main contributions of our paper relative to the analysis previously
completed for the discrete case.

The paper is organized as follows: In Section 2 we review the basic one-dimensional
energy balance climate model with human inputs introduced by Brock et al., (2012). In
Section 3 we provide a rigorous mathematical derivation for the temperature distribution
using two- and four-mode forms for the mean annual distribution of solar radiation energy
and the co-albedo function, and determine numerically the exact latitude dependent tem-
perature functions. In Section 4, building on Brock et al., (2012) and Kopp et al., (2012), we
introduce an exponential damage function to analyze the impact of climate change. We also
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provide solutions to the social planner problem and the problem of competitive equilibrium
in the world market. In Section 5 we discuss the optimal mitigation policy for carbon in
both spatially uniform and spatially di↵erentiated cases, and introduce a simple function
for welfare weights. In Section 6 we show how heat transport a↵ects the steady state dis-
tributions of local economic variables. In Section 7 we analyze qualitatively the e↵ect of
carbon and capital elasticities on the steady state solutions. In Section 8 we investigate the
robustness of the two- and four-mode modes by comparing the exact solutions to their re-
spective temperature models. In Appendix A and Appendix B we derive the exact solutions
to the temperature problem for the two- and four-mode cases, respectively. In Appendix C
we derive the steady state distributions for the socially optimal quantities.

2 Environmental Model Details

Here we recall the one-dimensional energy balance climate model (EBCM) with human
inputs introduced by Brock et al., (2012). There are of course other climate models (e.g.
Nordhaus (2007a,b), (2010), (2011)) which provide a spatial distribution of damages, but
these are based on more complex and computationally costly models, such as pattern scaling
(Lopez et al., (2012)) or emulation theory (e.g. Challenor et al., (2006)). In this note we
concentrate on the simplest coupled climate-economic model. The explicit one-dimensional
spatial property allows the coupled climate-economic model to evolve in both time and space.
In the presentation, we follow Brock et al., (2012) and use their notation.

Let x denote the sine of the latitude; then x = �1, x = 0, and x = 1 mark the South
Pole, Equator, and North Pole, respectively. For simplicity, we refer to x as latitude. Let
T (x, t) denote the sea level temperature measured in �C at latitude x and time t. The basic
energy balance equation with human input added can be written as (Wu and North (2007))

C
c

@T (x, t)

@t
= QS(x)↵(x, x

s

(t))� (A+BT (x, t)� h(t)) +D
@

@x

✓
(1� x2)

@T (x, t)

@x

◆
, (1)

where C
c

denotes the e↵ective heat capacity per unit area of earth atmospheric system (large
over water, small over land), 2Q is the solar constant, S(x) is the mean annual distribution of
solar radiation energy, ↵(x, x

s

(t)) is the absorption coe�cient or co-albedo function, which
is one minus the albedo of the earth-atmosphere system, with x

s

(t) being the latitude of
the ice line at time t, A + BT is the rate of outgoing infrared radiation to space with the
empirical coe�cients A and B derived from satellite measurements2, h(t) is the human input
at time t which reduces the amount of outgoing radiation (green-house e↵ect), and D is a
heat transport coe�cient measured in W/(m2)(�C).

Human input is represented by the amount of accumulated carbon dioxide in the atmo-
sphere that reduces outgoing radiation. It is defined by

h(t) = ⇠ ln

✓
1 +

M(t)

M0

◆
, (2)

2The coe�cients A andB take into account average cloudiness conditions, the e↵ects of infrared absorbing
gases, and the variability of water vapor (North et al., (1975)).
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Table 1: Parameter Values

Parameter Value Parameter Value
↵0 0.681 Q 688 Wm�2

↵2 -0.202 M0 596 GtC
↵4 -0.037 M2011 831 GtC
S0 0.5 B 1.24 W (m�1)(�C�1)
S2 -0.2385 D 0.3 W (m�1)(�C�1)
S4 -0.045 ⇠ 5.35 �Wm�2

A 221.6 Wm�2 g 1.178% IPCC A1F1

The parameter values for the dimensionless ↵0,↵2,↵4, S0, S2, S4 have been obtained by North et al., (1981).

The parameter values for A,B,D have been obtained by calibration so as to reproduce current global tem-

perature (Brock et al., (2012)). g = 1.178% is the average annual growth of carbon emissions corresponding

to the IPCC scenario A1F1 (http://www.ipcc-data.org/sres/ddc sres emissions.html).

where M0 is the pre-industrial concentration of atmospheric carbon dioxide (CO2), M(t) is
the concentration of CO2 at time t, and ⇠ = 5.35�Wm�2 is a temperature-forcing parameter
(�C per W per m2). The function M(t), which should be interpreted as the stock of man-
made CO2 in the atmosphere, evolves according to

Ṁ(t) =

ˆ 1

�1

�q(x, t)dx�mM(t) and M(0) = M0, (3)

where �q(x, t) are the emissions generated at time t and are assumed to be proportional to
the amount of fossil fuels used at latitude x at time t.

We assume that the total stock of fossil fuel available is fixed, i.e.,
ˆ 1

�1

q(x, t)dx = q(t) and

ˆ 1

0

q(t) = R0, (4)

where q(t) is total fossil fuels used across all latitudes at time t, and R0 is the total available
amount of fossil fuels on the planet.

The greenhouse e↵ect is thus incorporated in this model. The use of fossil fuels generates
emissions which increase the stock of atmospheric CO2. This carbon dioxide increases the
temperature by blocking the outgoing radiation.

At equilibrium, the incoming absorbed radiant heat at a given latitude in (1) is not
matched by the net outgoing radiation. The di↵erence is made by the meridional divergence

of heat flux, which is modeled by the term D @

@x

⇣
(1� x2)@T (x,t)

@x

⌘
(North et al., (1981)). This

term explicitly introduces into the climate model the spatial dimension stemming from heat
di↵usion.

The ice line is determined dynamically by the condition (Budyko (1969) and North
(1975a,b)) (

T > T
s

no ice line present at latitude x,

T < T
s

ice present at latitude x,
(5)
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where T
s

is empirically determined.
In general, the co-albedo function specified by North (1975a) is

↵(x, x
s

) =

(
↵0 = 0.38 if |x| > x

s

,

↵1 = 0.68 if |x| < x
s

;
(6)

note that since the albedo jumps discontinuously below the ice line, so does the absorption.
This general form of ↵ presents serious mathematical di�culties. As a result, it was

proposed by North et al., (1981) and was assumed by Brock et al., (2012) that ↵ and S are
given by

↵(x) = ↵0 + ↵2P2(x) and S(x) = S0 + S2P2(x), (7)

where P are the canonical Legendre polynomials recalled in Appendix A and B. North et
al., (1981) claim that this expression is su�cient. Here we rigorously test this assumption
and compare it to the four-mode case

↵(x) = ↵0 + ↵2P2(x) + ↵4P4(x) and S(x) = S0 + S2P2(x) + S4P4(x). (8)

In general, ↵ and S can be written as

↵(x) =
X

k�0

↵2kP2k(x) and S(x) =
X

k�0

S2kP2k(x), (9)

where P2k(x) are even-numbered Legendre polynomials, but we do not pursue this here.

3 Mathematical Derivations

In view of the form of (1) and the general expression for ↵ and S, to solve equation (1) it is
enough to assume that the solution is of the form

T̂ (x, t) =
X

k�0

T2k(t)P2k(x), (10)

where T2k(t) are solutions to appropriately derived ODEs. Note that we consider only even-
numbered Legendre polynomials to preserve the symmetry assumption for latitude x.

To simplify our analysis, we further assume that T evolves in time scale faster than
M and, hence, relaxes faster to the steady state. In mathematical terms, this means that
@T

@t

= 0, i.e., @T2k
@t

= 0 for all k.
From this assumption, we find that T solves

A+BT (x, t) = h(t) +QS(x)↵(x) +D
@

@x

✓
(1� x2)

@T (x, t)

@x

◆
. (11)

The goal is then to identify the coe�cients T2k and, thus, T for the two- and four-mode
cases.

It turns out that in the two-mode case T̂ is expressed in terms of P0, P2, and P4, while
in the four-mode case T̂ is expressed in terms of P0, P2, P4, P6 and P8. This observation is
one of the key contributions of the paper, since in previous work (in the two-mode case) T̂
was taken to have only two modes.
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3.1 Two-Mode

We assume that ↵ and S are given by (7). Then, as shown in Appendix A, the exact solution
to the temperature PDE (11) is

T̂ (x, t;D) = T0(t) + T2(D)P2(x) + T4(D)P4(x), (12)

where

T0(t) =
1

B

✓
�A+Q

✓
1

5
↵2S2 + ↵0S0

◆
+ h(t)

◆
, (13)

T2(D) =
Q

(B + 6D)

✓
2

7
↵2S2 + ↵0S2 + ↵2S0

◆
, (14)

and

T4(D) =
Q

(B + 20D)

✓
18

35
↵2S2

◆
. (15)

From (13)-(15) and (2), we see that T0 depends on the concentration M but not on the
thermal transport coe�cient D, and conversely, that T2 and T4 depend on D but not on M .
For future reference, it is convenient to write the temperature field as

T̂[2](x, t) = Z[2],0 + Z[2],1 ln

✓
1 +

M(t)

M0

◆
+

Z[2],2

B + 6D
P2(x) +

Z[2],4

B + 20D
P4(x), (16)

where ([2]) refers to the two-mode form. From the parameter values in Table 1, we find that

Z[2],0, Z[2],1, Z[2],4 > 0 and Z[2],2 < 0. (17)

The temperature function T̂[2] is shown in Figure 1 with t = 0 corresponding to year
2011.

Figure 1: The temperature function

The predicted temperature increases over a horizon of 100 years.
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Figure 2: Temperature and thermal transport

Figure 2 depicts temperature as a function of latitude and the thermal transport
coe�cient D. When D ! 1, the temperature function becomes spatially homogenous or
“flat” across latitudes, as the increase in transport speeds results in homogeneity.

Thus, in the two-mode case, an increase in D will warm x near the North and South
Poles more and cool x near the equator more for a given increase in M(t), as in Figure 2 (or
Figure 2 of Brock et al., (2012) and Figure 4 of North et al., (1981)).

3.2 Four-Mode

We use the four-mode expression for ↵ and S in (8). It is shown in Appendix B that the
exact solution to the temperature PDE (11) is

T̂ (x, t;D) = T0(t) + T2(D)P2(x) + T4(D)P4(x) + T6(D)P6(x) + T8(D)P8(x), (18)

where

T0(t) =
1

B

✓
�A+Q

✓
1

5
↵2S2 �

1193

288
↵4S4 + ↵0S0

◆
+ h(t)

◆
, (19)

T2(D) =
Q

B + 6D

✓
2

7
(↵2S4 + ↵4S2)�

42475

2772
↵4S4 +

2

7
↵2S2 + ↵0S2 + ↵2S0

◆
, (20)

T4(D) =
Q

B + 20D

✓
20

77
(↵2S4 + ↵4S2)�

25401

2002
↵4S4 +

18

35
↵2S2 + ↵0S4 + ↵4S0

◆
, (21)

T6(D) =
Q

B + 42D

✓
5

11
(↵2S4 + ↵4S2)�

470

99
↵4S4

◆
, (22)

and

T8(D) =
Q

B + 72D

✓
490

1287
↵4S4

◆
. (23)

From (19)-(23) and (2), we see that T0 depends on the concentration M but not on the
thermal transport coe�cient D, and, conversely, that T2, T4, T6, and T8 depend on D but
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not on M . Hence, it is convenient to write the temperature field as

T̂[4](x, t) =Z[4],0 + Z[4],1 ln

✓
1 +

M(t)

M0

◆
+

Z[4],2

B + 6D
P2(x)

+
Z[4],4

B + 20D
P4(x) +

Z[4],6

B + 42D
P6(x) +

Z[4],8

B + 72D
P8(x),

(24)

where ([4]) refers to the four-mode form. From the parameter values in Table 1, we find that

Z[4],0, Z[4],1, Z[4],8 > 0 and Z[4],2, Z[4],4, Z[4],6 < 0. (25)

The temperature function T̂[4] is shown in Figure 3 with t = 0 corresponding to year
2011.

Figure 3: The temperature function

The predicted temperature increases over a horizon of 100 years.

Figure 4: Temperature and thermal transport
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Figure 4 depicts temperature as a function of latitude and the thermal transport
coe�cient D. When D ! 1, the temperature function becomes spatially homogenous or
“flat” across latitudes, as the increase in transport speeds results in homogeneity.

In the four-mode case, an increase in D will warm x near the North and South Poles
more and cool x near the equator more for a given increase in M(t), as in Figure 4 (or Figure
2 of Brock et al., (2012) and Figure 4 of North et al., (1981)).

4 Economic Energy Balance Climate Model

For completeness, we describe next the coupled climate-economic model introduced by Brock
et al., (2012).

4.1 Damages

Since we are interested in the implications of thermal transport across latitudes we define
damages in terms of the temperature distribution. In this way we can trace the impact of
thermal transport on damages and perform meaningful comparative statistics with respect
to the thermal transport coe�cient, D.

As in Brock et al., (2012), we consider, for � > 0, the exponential damage function

⌦(T̂ (x, t)) = exp
⇣
��T̂ (x, t)

⌘
. (26)

In the context of this problem, ⌦ denotes the proportion of GDP available at latitude x
and time t after damages due to climate change have been accounted for. The elasticity of
marginal damages with respect to the temperature is ��, so an increase in temperature will
increase damages when adaption is fixed. In mathematical terms, this means that @⌦

@T

< 0.

4.2 Local Output

We assume that the output of our economy, Y (x, t), at latitude x and time t is produced
according to a standard Cobb-Douglas production function, F , with constant returns to
scale and constant total factor productivity (TFP). For mathematical simplicity, we assume
no population growth and constant labor.

It then follows that

Y (x, t) = A⌦(T (x, t))F (K(x, t), L, q(x, t))

= AL↵L⌦(T (x, t))K(x, t)↵Kq(x, t)↵q

=  (x, T (x, t))K(x, t)↵Kq(x, t)↵q ,

(27)

where
 (x, T (x, t)) = AL↵L⌦(T (x, t)). (28)

Here A and L are the TFP and labor, respectively,K(x, t) and q(x, t) denote capital and fossil
fuels respectively used at latitude x and time t, ↵

K

,↵
L

, and ↵
q

denote output elasticities of
capital, labor, and fossil fuels, respectively, and ⌦ is as in (26). The assumption of constant
returns to scale implies that

↵
K

+ ↵
L

+ ↵
q

= 1. (29)
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A more rigorous investigation on the impact of labor should look to model the following
distribution:

Figure 5: Latitudinal distribution of the world’s population in 1990 from the Carbon Dioxide
Information Analysis Center (CDIAC).

The population distribution is asymmetric about the equator and skewed towards the
Southern Hemisphere. Data on labor participation rates3 and population growth rates4

from The World Bank can be used to scale the above distribution and model the evolution
over time, respectively.

4.3 Potential World Output and Damages From Climate Change

In this economy we denote by F
total

(K(t), q(t), T ; t) the maximum output that the whole
world can produce. This takes into account the total world capital, K(t), available and total
world fossil fuel, q(t), used, for a given distribution of temperature, T , across the globe. Note
that for any function ⌘(x, t) (e.g. ⌘ = C,K, q), we abuse notation and, for the rest of the
paper, write ⌘(t) =

´
X

⌘(x, t)dx, where X = [�1, 1].
The overall resource constraint for the economy is

C(t) + K̇(t) + �K(t) = F
total

(K(t), q(t), T ; t), (30)

where C(x, t) is the consumption at location x and time t, C(t) =
´
X

C(x, t)dx is the total
consumption, and � is the rate of depreciation, which is taken to be constant across latitudes.

3http://data.worldbank.org/indicator/SL.TLF.CACT.ZS
4http://data.worldbank.org/indicator/SP.POP.GROW
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Our approach does not provide a breakdown of depreciation rates due to varying climate
conditions, but this can be accommodated by modeling depreciation rates across latitudes.
We leave this project for future research5.

Using  from (27), we define the specific (at location x and time t) and global damages,
respectively,

J(x, t;D) =
 (x, T (x, t))1/↵L

�´
X

 (x0, T (x0, t)1/↵L)dx0
�
↵K+↵q

, (31)

and

J(t;D) =

ˆ
X

J(x, t;D)dx. (32)

The potential world GDP, F
total

(K(t), q(t), T ; t), is computed through the following op-
timization problem

F
total

(K(t), q(t), T ; t) = max

ˆ
X

 (x, T (x, t))K(x, t)↵Kq(x, t)↵qdx, (33)

subject to the constraints
ˆ
X

K(x, t)dx  K(t) and

ˆ
X

q(x, t)dx  q(t). (34)

The Lagrangean associated with (33) is

L =

ˆ
X

 (x, T (x, t))K(x, t)↵Kq(x, t)↵qdx

+ µ
K

(t)

✓
K(t)�

ˆ
X

K(x, t)dx

◆
+ µ

q

(t)

✓
q(t)�

ˆ
X

q(x, t)dx

◆
,

(35)

with optimality conditions

↵
K

 (x, T (x, t))K(x, t)↵K�1q(x, t)↵q = µ
K

(t), (36)

and
↵
q

 (x, T (x, t))K(x, t)↵Kq(x, t)↵q�1 = µ
q

(t). (37)

In the context of potential world GDP, this means that the marginal products of capital
and fossil fuels are equated across latitudes for all times t.

4.4 Global Welfare Maximization

We analyze the welfare maximization problem of a social planner in the context of the
coupled climate-economic model in Brock et al., (2012).

5For example, to investigate the impact of climate on depreciation rates, one could take into account
that in really cold, high latitudes, equipment is highly stressed, whereas in extremely warm, humid, and low
latitudes, equipment rusts and malfunctions more frequently.
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Allowing for per capita damages in utility due to climate change, ⌦
C

(T (x, t)), turns
the economic part of the social welfare model into the Ramsey-like form for the “aggregate
dynastic consumer family.” The optimization problem then becomes

max

ˆ 1

0

ˆ
X

v(x)L

✓
U

✓
C(x, t)

L

◆
� ⌦

C

(T (x, t))

◆
dx dt. (38)

The planner maximizes (38) subject to the temperature climate constraint, the resource
constraint in each location, (30), and the carbon constraint, R0(x) =

´1
0 q(x, t)dt, where

v(x) are exogenously given non-negative welfare weights normalized such that
´
X

v(x)dx = 1.
In Section 3 we established for the regime under investigation that

T̂ (x, t) = T[2],0(t) + T[2],2(D)P2(x) + T[2],4(D)P4(x) (39)

and

T̂ (x, t) = T[4],0(t) + T[4],2(D)P2(x) + T[4],4(D)P4(x) + T[4],6(D)P6(x) + T[4],8(D)P8(x), (40)

for the two- and four-mode forms of ↵ and S respectively.
In view of (39) and (40), T[2],0 and T[4],0 are the only coe�cients that have t as a parameter.

Thus, the temporal impact of temperature on the social planner’s problem is seen exclusively
through T[2],0 and T[4],0 for the two- and four-mode cases, respectively.

In our context, the current value Hamiltonian for the social planner’s problem is

H =

ˆ
X

v(x)L

✓
U

✓
C(x, t)

L

◆
� ⌦

C

(T̂ (x, t))

◆
dx

+

ˆ
X

�
K

(x, t)
⇣
A⌦(T̂ (x, t))F (K(x, t), L, q(x, t))� C(x, t)� �K(x, t)

⌘
dx

+ �
M

(t)

✓
�mM(t) + �

ˆ
X

q(x, t)dx

◆
� µ

R

(x, t)q(x, t)

+ �
T0(t)

✓
�T0 + Z1 ln

✓
1 +

M(t)

M0

◆
+ Z0

◆
,

(41)

where �
K

, �
M

, and �
T0 are the Lagrange multipliers for capital, fossil fuels, and temperature

respectively. The state and controls are, respectively, v = (K(t), R(t),M(t), T (t, x)) and
u = (C(t), C(x, t), q(t), q(x, t)).

Since problem (38) is non-autonomous, we assume that the discount rate is su�ciently
high and that the functions of the problem satisfy the growth conditions required to apply
the Pontryagin maximum principle (Malysh, (2008) and Iyanaga, (1980)), which yields that
the controls must satisfy

8
>>><

>>>:

�
K

(t) = µ
C

(t) = v(x)U 0
✓
C(x, t)

L

◆
, (42)

�
K

(t)F 0
total,q

= µ
R

(t)� µ
q

(t), (43)

�
M

(t)� = µ
q

(t). (44)
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Immediately one sees that, for equal welfare weights, (42) implies that per capita con-
sumption should be equated across locations.

For the costates we have

v(x)U 0
✓
C(x, t)

L

◆
= �

K

(x, t), (45)

A⌦(T̂ (x, t))F 0
q

=
µ
R

(x, t)� ��
M

(t)

�
K

(x, t)
, (46)

�̇
K

(x, t)

�
K

(x, t)
= ⇢+ � � A⌦(T̂ (x, t))F 0

K

, (47)

µ̇
R

(x, t) = ⇢µ
R

(x, t), (48)

�̇
M

(t) = (⇢+m)�
M

(t)� �
T0(t)

Z1⇣
1 + M(t)

M0

⌘ , (49)

and

�̇
T0(t) = (⇢+ 1)�

T0(t) +

ˆ
X

v(x)L⌦0
C,T0

�
ˆ
X

�
K

(x, t)A⌦0
T0
Fdx. (50)

The optimal temporal and latitudinal paths for the states, controls, and costates are
determined by the solution of the welfare maximization problem, provided it exists and
satisfies the desirable stability properties.

These paths can be written as
8
<

:

{K⇤(t;D), K⇤(t, x;D), R⇤(t;D),M⇤(t;D), T ⇤(t, x;D)} (51)

{C⇤(t;D), C⇤(x, t;D), q⇤(t;D), q⇤(x, t;D)} (52)

{�⇤
K

(t;D),�⇤
M

(t;D), µ⇤
R

(t;D),�⇤
T

(t, x;D)} (53)

where (⇤) denotes optimality.
Substituting (51) into (31) and (32) determines the optimal damages from climate change

on a global or a location basis.

4.5 Competitive Equilibrium with Fossil Fuel Taxes

To determine the optimal mitigation policy for carbon emissions, Brock et al., (2012) pro-
posed a worldwide decentralized market economy with private ownership containing respec-
tive consumers and firms at each latitude x and world fossil fuel firms.

Assume that each latitude x represents a country. In each country, the representative con-
sumer maximizes utility subject to a permanent income constraint and takes ⌦

C

(T (x, t)) =
⌦̄

C

as parametric. The representative firm maximizes profits and takes world prices of fossil
fuels, pC(x), and taxes on fossil fuel use, ⌧(x), as parametric. At the global scale, the world
fossil fuel firms maximize profits and take taxes on their profits, ✓, as parametric.

4.5.1 Consumers

The economy, at each time t, is populated by a finite number of infinitely lived agents which
are referred to as “dynastic families.” Moreover, it is assumed that all members of a given

13



generation are alike. Time is continuous and a new dynasty is created at every time. As
before, dynastic families take per capita damages, ⌦

C

(T (x, t)) = ⌦̄
C

, as parametric beyond
their control. They can also borrow and lend on the world bond markets at the rate of
r, which for simplicity here is taken to be independent of t. The solution to the dynastic
family problem makes use of the average human wealth and the stochastic discount factor
that summarizes the influence of future prices on current decisions.

Consumers receive as lump-sum payments the fractions s
F

(x, t) and s
Tax

(x, t) of after-tax
profits from fossil fuel firms, ⇡

F

(t), and proceeds from fossil fuel taxes, Tax(t), respectively.
Moreover, the bonds, B(x, t), and capital, K(x, t), held at location x and time t must satisfy
the constraints

B(x, 0) = 0, B(x, t)exp(�rt) !
t!1

0 and K(x, t)exp(�rt) !
t!1

0. (54)

The solvency constraint above only requires that the present discounted value of net
non-monetary liabilities be zero in the long run.

The present value form of the consumer’s budget constraint can then be written asˆ 1

0

exp(�rt)ps(t)C(x, t)dt = K0(x) +

ˆ 1

0

exp(�rt)ps(x)I(x, t)dt, (55)

subject to capital and income constraints

K0(x) = K(x, 0) (56)

and
I(x, t) = w(x, t)L+ s

F

(x, t)⇡
F

(t) + s
Tax

(x, t)Tax(t). (57)

Here, ps(t) is the spot price of the consumption good at time t and w(x, t) is the wage at
location x.

The consumer thus solves the optimal control problem

max
{C(x,t)}

ˆ 1

0

exp(�⇢t)

✓
LU

✓
C(x, t)

L

◆
� ⌦̄

C

◆
dt (58)

with the optimality condition

U 0
✓
C(x, t)

L

◆
= ⇤(x) exp(⇢t)pC(t), (59)

where pC(t) = exp(�⇢t)ps(t) and ⇤(x) is the Lagrangien multiplier for the permanent income
constraint (55) and represents the marginal utility of capitalized income at location x.

We can then relate the equilibrium problem and the social planner’s problem by letting
pC(t) = exp(�⇢t)�

K

(t;D). This produces the optimality condition

v(x)U 0
✓
C(x, t)

L

◆
= �

K

(t;D). (60)

Following the First Theorem of Welfare Economics, the welfare weights used by the
social planner are the reciprocal of marginal utility, or Negishi weights (Stanton (2009)),
v(x) = 1/⇤(x).
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The Second Theorem of Welfare Economics states that any solution of the social planner’s
problem for any arbitrary non-negative set of welfare weights across locations will satisfy the
conditions for competitive equilibrium, except for the budget constraint in each location.
These can only be satisfied through appropriate transfer payments across locations.

Thus, given a specific choice of welfare weights across locations, the corresponding solu-
tion to the social planner’s problem can be implemented as a competitive equilibrium with
transfers across locations.

4.5.2 Firms Producing Consumption Goods

The representative firm located at latitude x at time t solves the optimization problem

max
{K(x,t),q(x,t)}

pC(t)(A⌦(T (x, t))F (K(x, t), L, q(x, t))

� (r(t) + �)K(x, t)� L� (p(x, t) + ⌧(x, t))q(x, t)),
(61)

where p(x, t) is the price paid for fossil fuels and ⌧ is the carbon tax paid by the represen-
tative firm. Since F (K,L, q) has constant returns to scale, the profits for firms producing
consumption goods will be zero at each x.

The optimality conditions for capital, K, and carbon, q, yield

A⌦(T (x, t;D))F 0
K

(K(x, t), L, q(x, t)) = r(t) + �, (62)

A⌦(T (x, t;D))F 0
q

(K(x, t), L, q(x, t)) = p(x, t) + ⌧(x, t), (63)

and
A⌦(T (x, t;D))F 0

L

(K(x, t), L, q(x, t)) = w(x, t). (64)

Therefore, firms located at latitude x and time t will choose demands K(x, t) and q(x, t)
according to (62) and (63).

To equate marginal value products across latitudes for all t, taxes on fossil fuels must be
equal across locations. That is, ⌧(x, t) = ⌧(t). If such a scenario arises through competition,
then we also have p(x, t) = p(t). This is addressed in Section 5.

4.5.3 Firms Producing Fossil Fuels

The world firms producing fossil fuels solve the optimization problem

max
{q(x,t)}

ˆ 1

0

exp(�rt)pC(t)p(t)q(x, t)(1� ✓(t))dt, (65)

subject to the world resource constraintˆ 1

0

ˆ
X

q(x, t)dxdt  R0, (66)

and where, as before, ✓(t) denotes the profit tax fossil fuel firms face.
The resulting first order condition is

p(t)(1� ✓(t)) = µ0 exp(rt) = (A⌦F 0
q

� ⌧(x, t))(1� ✓(t)), (67)

where µ0 is the Lagrange multiplier on the world resource constraint (66).
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4.6 Equilibrium

From Section 4.5.2, we know that in any decentralized problem, the representative firms
producing consumption goods located at latitude x will choose capital and carbon demands
K(x, t) and q(x, t) so that

A⌦F 0
K

= r(t) + �, (68)

A⌦F 0
q

= p(t) + ⌧(x, t), (69)

where F 0
K

and F 0
q

denote respectively the derivatives of F with respect to K and q. On the
other hand, the market clearing conditions require

(´
X

K(x, t)dx = K(t),
´
X

q(x, t)dx = q(t),
´
X

B(x, t)dx = 0,´
X

C(x, t)dx = C(t), and
´
X

Y (x, t)dx = Y (t).
(70)

The temporal and latitudinal equilibrium paths for C, K, and q are determined by the
consumer and market clearing conditions, as well as the optimality conditions (62)-(64) and
(67) for a multiplier value µ̄0 that exhausts the fossil fuels reserves (66).

Firms take temperature and taxes as parametric. Hence, these equilibrium paths can be
written as

{Ce(x, t;D, ⌧, ✓, p), Ke(x, t;T, ⌧, ✓, p), qe(x, t;T, ⌧, ✓, p)}, (71)

where (e) denotes equilibrium.

5 Optimal Mitigation Policy

Here we introduce a carbon tax, ⌧ ⇤(x, t), to correct for the climate externality. Such a tax
will induce consumers and firms to produce a competitive equilibrium equal to the Pareto
optimal quantities. The social planner finds the optimal paths of (51) by solving the Pareto
optimum problem, PO⇤(v), for a given set of non-negative welfare weights. To achieve these
optimal quantities, a tax is implemented through competitive markets. This ensures that
both consumers and firms face a carbon tax equal to the social marginal cost ⌧ ⇤(x, t) of
carbon usage at each x and t. Implementation of the PO⇤(v) by ⌧ ⇤(x, t) is feasible by the
concavity assumptions of the consumer and producer problems (Brock et al., (2012)).

Here we investigate the two cases of spatially uniform and spatially di↵erentiated carbon
taxes.

5.1 Spatially Uniform Optimal Carbon Taxes

Social and private marginal products for capital, K, and carbon, q, must be equated to
implement PO⇤(v). This is done by combining the welfare maximizing conditions (42)-(50)
with the market equilibrium conditions (59), (62), (63), and (67). We denote the welfare
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maximizing paths by (⇤) and obtain

v(x)U 0
✓
C⇤(x, t)

L

◆
= �⇤

K

(t;D), (72)

⌧ ⇤(x, t;D) =
µ⇤
0(t;D)� ��⇤

M

�⇤
K

(t;D)
� p(t) =

µ⇤
0(t;D)� ��⇤

M

v(x)U 0
⇣

C

⇤(x,t)
L

⌘ � p(t), (73)

and

p(t) =
µ0 exp(rt)

1� ✓⇤(t)
. (74)

Suppose now that the social planner can implement without cost welfare weights of
v̄ = 1/⇤̄. Under such endowments, per capita consumption will be equated across latitudes,
and the resulting Pareto optimum, PO(v̄), will also be a competitive equilibrium. The
Second Theorem of Welfare Economics then states that PO(v̄) can be implemented with the
appropriate transfers. In turn, (73) yields the optimal spatially uniform tax rate

⌧ ⇤(t;D) =
µ⇤
R

(t;D)� ��⇤
M

(t;D)

v̄U 0(C⇤
v̄

(t))/L
� p(t). (75)

The climate externality is captured in the carbon tax by the costate variable �⇤
M

(t;D).
In Appendix C.2 we show that �⇤

M

(t;D) < 0. This implies that when we account for the
climate externality, carbon taxes increase. In Section 6.2 we analyze the dependence of the
tax functions on the thermal transport coe�cient D.

5.2 Spatially Di↵erentiated Optimal Carbon Taxes

In the absence of international transfers, a spatially uniform taxation policy is not possible,
since it is not always feasible to equalize per capita consumption across locations. Thus, to
correct for the climate externality, the social planner must implement a spatially di↵erenti-
ated taxation policy.

For the sake of analysis, we consider only the polar case where all locations are closed
economies, with their own isolated capital markets, fossil fuel reserves, and fossil fuel mar-
kets. This is clearly unrealistic but it will allow us later to evaluate both qualitatively and
quantitatively the forces that generate spatially di↵erentiated carbon taxes.

From Section 4 we have the following competitive equilibrium conditions for the closed
economies

U 0
✓
C(x, t)

L

◆
= ⇤(x) exp(⇢t)pC(x, t), (76)

A⌦(T̂ (x, t))F 0
K

= r(x, t) + �, (77)

A⌦(T̂ (x, t))F 0
q

= p(x, t) + ⌧(x, t), (78)

and

p(x, t) =
µ0 exp(�rt)

1� ✓⇤(x, t)
= µ0 exp(�rt), (79)
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where we have set ✓⇤(x, t) = 0 to simplify the exposition.
Denote by

p⇤(x, t) = p(x, t) + ⌧ ⇤(x, t) (80)

the social price of carbon at location x and time t. Then,

p⇤(x, t,D) =
µ⇤
R

(x, t;D)� ��⇤
M

(t;D)

�⇤
K

(x, t;D)
=

µ⇤
R

(x, t;D)� ��⇤
M

(t;D)

v(x)U 0
⇣

C

⇤(x,t)
L

⌘ , (81)

where (⇤) indicates optimal paths.

If the social planner does not use Negishi weights, then v(x)U 0
⇣

C

⇤(x,t)
L

⌘
6= v(x0)U 0

⇣
C

⇤(x0
,t)

L

⌘
,

and the optimal full social price of carbon is di↵erent across locations. The climate exter-
nality is again captured in the carbon tax by the costate variable �⇤

M

(t;D).

5.3 Welfare Weights

Assume that the social planner can utilize without cost the Negishi weights to implement

a competitive equilibrium with zero transfers so that v(x)U 0
⇣

C

⇤(x,t)
L

⌘
= 1. Then, spatially

uniform optimal carbon taxes can be implemented with welfare weights

v̄ =
1

U 0
⇣

C

⇤(x)
L

⌘ = C⇤(x). (82)

5.3.1 Function for Welfare Weights

If, as discussed in Section 5.2, it is not possible to implement Negishi weights without cost,
then the planner must implement spatially di↵erentiated taxes to achieve the Pareto optimum
allocation. Following Stanton (2009), we implement a policy that weights poorer countries by
higher and wealthier countries by lower than the Negishi weights do in the spatially uniform
case. As already mentioned, the integral of the weights over space x is normalized at unity.

We consider the simple stepwise weights:

v(x) =

8
>>>>>><

>>>>>>:

1
20 if � 1  x  �3

4 ,
17
10(x+ 3

4) +
1
20 if � 3

4  x  �1
4 ,

9
10 if � 1

4  x  1
4 ,

17
10(

3
4 � x) + 1

20 if 1
4  x  3

4 ,
1
20 if 3

4  x  1.

(83)

Following the most recent world GDP mapping6, we assume for this model that the GDP
for the wealthiest countries is greater than the GDP for the poorest countries by a factor
of ten. We also see in the model described above that GDP tends to grow away from the
equator, as is the case with world GDP.

A more comprehensive function of welfare weights is investigated by Saez and Stantcheva
(2013) but is beyond the scope of this paper.

6http://www.indexq.org/economy/gdp.php
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6 Impact of Thermal Transportation and Endogenous

Co-albedo

Next we make some additional simplifying assumptions. Namely, we assume no technological
change, constant population, no fossil fuel constraint at each latitude, logarithmic utility
function with no per capita damages in utility due to temperature increase, and a production
function with constant returns to scale at each latitude x and time t.

The simplifications of no technological change and no population growth allow us to
perform both a qualitative and quantitative analysis at the steady state. The no fossil fuel
constraint implies µ

R

= 0 for all x and t, while the assumption about the utility function
implies that ⌦

C

= 0. We remark that intuitively, the assumption of no fossil fuel constraint
is not unreasonable as a rising opportunity cost of fossil fuel extraction will guarantee that
the stock of carbon is never actually exhausted.

6.1 Steady State

The steady state distributions for the socially optimal quantities of temperature, T ⇤, dam-
ages, ⌦(��T ⇤), capital, k̄⇤, fossil fuels, q̄⇤, and consumption, c̄⇤, are derived in Appendix C
and are listed below:

T ⇤
[2],0 =Z[2],1ln

✓
1 +

M⇤

M0

◆
+ Z[2],0, (84)

T ⇤
[4],0 =Z[4],1ln

✓
1 +

M⇤

M0

◆
+ Z[4],0, (85)

T̂ ⇤
[2](x) =Z[2],0 + Z[2],1ln

✓
1 +

M⇤

M0

◆
+

Z[2],2

1 + 6D
P2(x) +

Z[2],4

1 + 20D
P4(x), (86)

and

T̂ ⇤
[4](x) =Z[4],0 + Z[4],1 ln

✓
1 +

M⇤

M0

◆
+

Z[4],2

B + 6D
P2(x)

+
Z[4],4

B + 20D
P4(x) +

Z[4],6

B + 42D
P6(x) +

Z[4],8

B + 72D
P8(x),

(87)

and

q̄⇤(x) =� (⇢+ �)

��⇤
M

↵
q

(⇢+ (1� ↵
K

)�)
v(x) = (1 + ⇢)(⇢+m)

↵
q

��

(1 + M

⇤

M0
)

Z1
v(x), (88)

k̄⇤(x) =

✓
⇢+ �

↵
K

◆ 1
↵K�1

(A⌦(T̂ ⇤(x)))
1

1�↵K q̄⇤(x)
1

1�↵K

= �3⌦(T̂
⇤(x))

1
1�↵K = �3exp

 
�T̂ ⇤(x)

1� ↵
K

!
,

(89)

c̄⇤(x) =A⌦(T̂ ⇤(x))k̄⇤(x)↵K q̄⇤(x)↵q � �k̄⇤(x), (90)
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and

�⇤
K

(x) =
v(x)

c̄⇤(x)
, (91)

where

�3 =

✓
⇢+ �

↵
K

◆
(Aq̄⇤(x))

1
1�↵K . (92)

6.2 Impact

Section 6.1 indicates that the steady state values of per capita capital and consumption at
each location are a↵ected by the heat transport coe�cient D through their dependence on
damages ⌦(��T̂ ⇤(x)). The impact of D on damages at latitude x can be determined by

@⌦(x)

@D
=

@⌦

@T̂ ⇤

@T̂ ⇤(x)

@D
. (93)

Since @⌦
@T̂

⇤ < 0, the impact of D on damages at a given latitude depends on the sign of

derivative @T̂

⇤(x)
@D

.

For the two- and four-mode expressions of ↵ and S, we find that the zeroes of @T̂

⇤(x)
@D

are functions of D, which we call x[2](D) and x[4](D) for the two- and four-mode forms
respectively. There are two zeroes in [�1, 1], which we call x±

[2](D) and x±
[4](D), for each

form.
For the two-mode form, we see that

@x+
[2](D)

@D
> 0 and

@x�
[2](D)

@D
< 0, (94)

which implies that, as D increases, |x[2](D)| increases.
For the four-mode form, we see that

@x+
[4](D)

@D
< 0 and

@x�
[4](D)

@D
> 0, (95)

which implies that, as D increases, |x[4](D)| decreases.
We thus see a significant di↵erence between the two- and four-modes in measuring the

impact of thermal di↵usion on damages.
The two-mode expression suggests that as the rate of di↵usion increases, the area in

the world for which temperature and damages are reduced, increases, while the area in the
world for which temperature and damages are increased, decreases. The four-mode case
suggests that as the rate of di↵usion increases, the area in the world for which temperature
and damages are reduced, decreases, while the area in the world for which temperature and
damages are increased, increases.

Moreover we find that, for our particular choice of parameter values, we have x[2](0) =
±0.5145 and lim

D!1 x[2](D) = ±0.5707 for the two-mode form, and x[4](0) = ±0.6922 and
lim

D!1 x[4](D) = ±0.5877 for the four-mode form.
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We further notice that max
{D}

|x[2](D)| < 1/
p
3 < min

{D}
|x[4](D)|. This implies that the

approximation provided in Brock et al., (2012) overestimates the area in the world for which
temperature and damages are reduced in the two-mode case, and underestimates the area
in the world for which temperature and damages are reduced in the four-mode case.

Call x⇤ the positive zero of @T̂

⇤(x)
@D

in (0, 1), where T̂ ⇤(x) is the steady state distribution
of temperature. Then, from (86) and (87), we find

@T̂ ⇤(x)

@D

8
>>>><

>>>>:

= 0 for x = ±x⇤,

< 0 for � x⇤ < x < x⇤,

> 0 for

(
x⇤ < x  1,

�1  x < �x⇤,

(96)

and, thus,

@⌦(x)

@D
=

@⌦

@T̂ ⇤

@T̂ ⇤(x)

@D

8
>>>><

>>>>:

= 0 for x = ±x⇤,

> 0 for � x⇤ < x < x⇤ damage reduction,

< 0 for

(
x⇤ < x  1,

�1  x < �x⇤,
damage increase.

(97)

However, (89)-(91) yield

@k̄⇤

@D
=

1

1� ↵
K

�3⌦
↵K

1�↵K
@⌦

@T̂ ⇤

@T̂ ⇤(x)

@D

8
>>>><

>>>>:

= 0 for x = ±x⇤,

> 0 for � x⇤ < x < x⇤,

< 0 for

(
x⇤ < x  1,

�1  x < �x⇤,

(98)

and

@c̄⇤

@D
= A @⌦

@T̂ ⇤

@T̂ ⇤(x)

@D
k̄⇤(x)↵K q̄⇤(x)↵q + (↵

K

A⌦k̄⇤(x)↵K�1q̄⇤(x)↵q � �)
@k̄⇤(x)

@D8
>>>><

>>>>:

= 0 for x = ±x⇤,

> 0 for � x⇤ < x < x⇤,

< 0 for

(
x⇤ < x  1,

�1  x < �x⇤,

(99)

since ↵
K

A⌦k̄⇤(x)↵K�1q̄⇤(x)↵q � � > 0 at the steady state due to (47),
and
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Finally, it follows from (81) that the impact of D on the optimal social price of carbon at
the steady state is

@p̄⇤

@D
=

��⇤
M

�⇤
K

(x)2
@�⇤

K

(x)

@D

8
>>>><

>>>>:

= 0 for x = ±x⇤,

> 0 for � x⇤ < x < x⇤,

< 0 for

(
x⇤ < x  1,

�1  x < �x⇤.

(101)

Let I1 = {x : �x⇤ < x < x⇤} and I2 = {x : �1  x < �x⇤ and x⇤ < x  1}, i.e., I1
are latitudes below x = ±x⇤, including the equator, while I2 are latitudes above x = ±x⇤,
including the North and South Pole.

Under the simplifying assumptions of Section 6, an increase in the heat transport coe�-
cient D has the following e↵ects on the steady state Pareto optimal solutions of the social
planner’s problem:

i) decreases temperature and damages, increases per capita capital and consumption, and
increases the social cost of fossil fuels in I1,

ii) increases temperature and damages, decreases per capita capital and consumption, and
decreases the social cost of fossil fuels in I2.

7 Qualitative Analysis

Here we see how changes in the output elasticities of capital and carbon a↵ect the steady
state solutions of the social planner problem in both the spatially uniform and spatially
di↵erentiated cases.

7.1 Impact of Carbon Output Elasticity

7.1.1 Stock of Atmospheric CO2

Since, in view of (188), M⇤ = M0C↵q

M0�C↵q
, where C > 0 and C↵

q

< M0,

@M⇤

@↵
q

=
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@↵
q

✓
M0C↵

q

M0 � C↵
q

◆
= M0C

(M0 � C↵
q

+ C2↵
q

)

(M0 � C↵
q

)
> 0. (102)

This suggests that as the marginal cost of carbon decreases and a country shifts more towards
carbon-heavy production, the steady state stock of man-made CO2 in the atmosphere will
increase. It follows from (86) and (87) (recall that Z[n],1 > 0 for n 2 {2, 4}) that such a move

will also increase the steady state value of temperature, T̂ ⇤(x).
These results are intuitive as the greenhouse e↵ect tells us that an increase in carbon

emissions will increase temperature by blocking outgoing radiation.
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7.1.2 Carbon Usage

Since, in view of (88),

q̄⇤(x) = (1 + ⇢)(⇢+m)
↵
q

��

(1 + M

⇤

M0
)

Z1
v(x), (103)

it follows from (102) that @q̄

⇤

@↵q
> 0.

This is obvious because as countries utilize more carbon in production, the steady state
value for total fossil fuels used at each latitude will inevitably increase.

7.1.3 Spatially Uniform Optimal Carbon Taxes

From our simplifying assumptions, we find that the optimal tax on carbon in Section 5.1 is

⌧ ⇤ = ���⇤
M

� p, (104)

where ���⇤
M

> 0. The impact of ↵
q

on the optimal carbon tax is determined, in view of
(102), by
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, (105)

with @M

⇤

@↵q
> 0. Thus the impact of ↵

q

on the optimal carbon tax depends on the sign of @⌧

⇤

@M

⇤ .

It follows from (178) that
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(106)

and
@p⇤(x)

@↵
q

=
@

@↵
q

(p+ ⌧ ⇤(x)) < 0. (107)

This suggests a decrease in both the optimal tax and optimal social price of carbon as
countries move more towards carbon-heavy production in the spatially uniform problem.
This makes sense because as ↵

q

increases, the marginal cost of carbon in both a market and
social setting decreases.

7.1.4 Spatially Di↵erentiated Optimal Carbon Taxes

The optimal tax on carbon in Section 5.2 is

⌧ ⇤(x) = � ��⇤
M

v(x)U 0(c̄⇤(x))
� p(x)

= ���⇤
M

c̄⇤(x)

v(x)
� p(x),

(108)
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where ���⇤
M

> 0.
The impact of ↵

q

on the optimal carbon tax is seen in

@
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(109)

where the sign is determined from (102) and (103)
As with (107),

@

@↵
q

p⇤(x) =
@

@↵
q

(p+ ⌧ ⇤(x)) < 0, (110)

and, hence, the results match those of the spatially uniform case.

7.2 Impact of Capital Output Elasticity

7.2.1 Carbon Usage and Atmospheric Stock

The output elasticity ↵
K

has no impact on the steady state distribution of carbon since
neither M⇤ nor q̄⇤(x) depend on it.

7.2.2 Capital Levels

Since, in view of (89),
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K
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(111)

it follows that, as the elasticity of capital increases, so does the steady state of capital across
latitudes.
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7.2.3 Spatially Uniform Optimal Carbon Taxes

Given (104), the impact of ↵
K

on the optimal carbon tax is determined by the sign of

@⌧ ⇤(x)
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with
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In view of (80),
@

@↵
q

p⇤(x) =
@

@↵
q

(p+ ⌧ ⇤(x)) > 0. (114)

This suggests an increase in both the optimal tax and optimal social price of carbon as the
output elasticity of capital increases in the spatially uniform problem, a fact which makes
sense intuitively because, as ↵

K

increases, the marginal cost of capital decreases. This results
in an increase in the relative marginal cost of carbon in both a market and social setting.

7.2.4 Spatially Di↵erentiated Optimal Carbon Taxes

In view of (108), the impact of ↵
K

on the optimal carbon tax is determined by

@⌧ ⇤(x)
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=
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with

C̃ =
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(⇢+m)
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(1 + M
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(1 + ⇢)

1

v(x)
, (116)

where the inequality above following from the fact that ⇢+ (1� ↵
K

)� < �k̄⇤.
As in (114),

@

@↵
K

p⇤(x) =
@

@↵
K

(p+ ⌧ ⇤(x)) > 0, (117)

and, hence, the results match those for the spatially uniform case.
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8 Mode Comparison

We evaluate the robustness of the two- and four-mode expressions for the mean annual
distribution of solar radiation energy and the co-albedo function. We utilize a distance
metric between the two- and four-mode solutions to the optimal social planner’s problems.
More specifically, we compare the exact solutions to the temperature and damage problems,
as well as the steady state quantities of capital and social price of carbon.

8.1 Method of Comparison

The L2- or Euclidean norm provides an adequate measure of a distribution over a vector
space. As we are interested in comparing the overall behavior of the two- and four-mode
cases, we look for a way to relate the norms of each form. For mathematical simplicity, we
use the square of the L2-norm.

Denote by A2 and A4 the square of the L2 norms for the two- and four-mode forms,
respectively. The comparison statistic

R =
|A4 � A2|

A2
(118)

is used to evaluate the e↵ectiveness of the two-mode form when compared to the four-mode
form at the � = 0.05 significance level. An R value close to 0 indicates that the two-mode
form is an adequate estimate for the true distribution, while R values of 1 or greater indicate
that the two-mode form either overestimates or underestimates the true distribution.

The test statistics in the following cases are all statistically significant, suggesting that the
two-mode form for the mean annual distribution of solar radiation energy and the co-albedo
function is adequate in modeling the steady state distributions of temperature, damages,
capital in both the spatially uniform and spatially di↵erentiated case, and the socially optimal
price of carbon.

8.2 Reference Values

The following parameter values are determined empirically:

Table 2: Parameter Values

Parameter Value Parameter Value
A 50 � 1
⇢ 0.05 � 0.8
� 0.0028 ↵

k

0.3
↵
Q

0.08 ↵
L

1-0.3-0.08 = 0.62
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8.3 Temperature

It follows from (86) that

A2 =

ˆ
X

|T̂ ⇤
[2](x)|2dx
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◆
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while (87) yields
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dx.

(120)

Using the expressions for A2 and A4, for the above parameter values, we find using Mathe-
matica that

R
T

=
|A4 � A2|

A2
= 0.0269. (121)

8.4 Damages

It follows from (86) and (87) that
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and
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Again, from (122) and (123), for the above parameter values, the comparison statistic is

R⌦ =
|A4 � A2|

A2
= 0.0236. (124)

27



8.5 Evolution of Capital

8.5.1 Spatially Uniform Problem

It follows from (89) that
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with
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The third equality above follows from
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(127)

which is derived from using the welfare weight v(x) = v̄ in (88) for the spatially uniform
problem.

Inserting (86) into (127), we get
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while inserting (87) into (127) gives
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Using the parameter values with (128) and (129), we find

R
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=
|A4 � A2|
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= 0.00156. (130)

8.5.2 Spatially Di↵erentiated Problem

We have
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where the third equality above follows from (88).
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Using (83) and (86) into (131), we find, for the two-mode form,
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Similarly, using (83) and (87) into (131), we find, for the four-mode form,
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The comparison statistic is then

R
K,D

=
|A4 � A2|

A2
= 0.00156. (135)
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8.6 Spatially Di↵erentiated Carbon Tax

We consider the socially optimal price for carbon under spatially di↵erentiated tax policy
with closed economies.

From (81), we have
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Then,
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2

+

ˆ � 1
4

� 3
4

������
C̄

( 9
10)

2�↵K
↵K�1

exp

 
��T̂ ⇤(x)

1� ↵
K

!������

2

+

ˆ 3
4

1
4

������
C̄

(1710(
3
4 � x) + 1

20)
2�↵K
↵K�1

exp

 
��T̂ ⇤(x)

1� ↵
K

!������

2

+

ˆ 1

x

3
4

������
C̄

( 1
20)

2�↵K
↵K�1

exp

 
��T̂ ⇤(x)

1� ↵
K

!������

2

.

(138)

It follows that

A2 =

ˆ
X

�����C̄v(x)
2�↵K
↵K�1 exp

 
�
�T̂ ⇤

[2](x)

1� ↵
K

!�����

2

dx

=

ˆ
X

����C̄v(x)
2�↵K
↵K�1 exp

✓
� �

1� ↵
K

✓
Z[2],0 + Z[2],1ln

✓
1 +

M⇤

M0

◆

+
Z[2],2

1 + 6D
P2(x) +

Z[2],4

1 + 20D
P4(x)

◆◆����
2

dx,

(139)
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and

A4 =

ˆ
X

�����
C̄

v(x)
2�↵K
↵K�1

exp

 
��T̂ ⇤(x)

1� ↵
K

!�����

2

dx

=

ˆ
X

�����
C̄

v(x)
2�↵K
↵K�1

exp

✓
� �

1� ↵
K

✓
Z[4],0 + Z[4],1 ln

✓
1 +

M⇤

M0

◆
+

Z[4],2

B + 6D
P2(x)

+
Z[4],4

B + 20D
P4(x) +

Z[4],6

B + 42D
P6(x) +

Z[4],8

B + 72D
P8(x)

◆◆����
2

dx.

(140)

From (139) and (140), the comparison statistic is

R
p

=
|A4 � A2|

A2
= 0.0474. (141)

9 Concluding Remarks

In this paper we have investigated the qualitative properties of the climate-economic problem
introduced by Brock et al., (2012). We have performed a rigorous mathematical analysis for
two- and four-mode expressions for the mean annual distribution of solar radiation energy
and the co-albedo function, and have derived the exact solution to the temperature problem
in both cases. We have used the exact solutions to analyze directly the impact of thermal
di↵usion and have concluded that thermal di↵usion explicitly a↵ects the spatial distributions
of temperature and damages, but does so di↵erently for the two- and four-mode cases.

Our results confirm that the transport of heat from lower latitudes to higher latitudes
will increase temperature and damages there, while decreasing temperature and damages
at the lower latitudes. If, as Pierce et al., (2011) suggest, human actions change the heat
capacity of the oceans and atmosphere, then the di↵usion coe�cient is expected to change.
Our results then become significant in showing the e↵ect of human behavior on damages and
other economic variables.

We have investigated the optimal mitigation policy introduced by Brock et al., (2012) to
correct for the climate externality introduced in the coupled model. Our results confirm that
when international transfers are allowed, a spatially uniform carbon tax can be implemented
with Negishi transfer payments. When such payments are not allowed, we have found a
spatially di↵erentiated mitigation regime using a simple welfare weights function and have
investigated the impact of heat di↵usion for closed economies. While this polar case is by
no means an adequate representation of the world economy, Brock et al., (2012) extend the
results to show that under plausible assumptions, the social price of fossil fuels around the
equator should be lower relative to other latitudes.

We have also provided results qualifying the e↵ect of carbon and capital output elasticities
on the steady state quantities. Our findings note specifically that, as the returns to scale of
carbon increase, the socially optimal price of carbon decreases and the stock of man-made
carbon in the atmosphere increases at the steady state. This is important in understanding
the benefits (or lack thereof) of regulatory measures aimed at limiting the use of fossil fuels.
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A possible next step would involve finding the specific carbon and capital output elasticities
that minimize damages at the steady state.

In this paper we have also evaluated the robustness of the two- and four-mode expressions.
Our results show that in the dynamic case, the two-mode form is adequate in modeling the
steady state distributions when compared to the four-mode form. We believe that analyzing
the strength of the two-mode form in the context of our model is one of the main contributions
of our paper, since it allows for a better understanding of other climate-economic results.

Possible extensions to our work include a robustness analysis for economic models with
variable labor and rates of depreciation, and the addition of an ocean layer or second-
dimension (longitude) to the energy balance climate model. We see from Marshall and
Rose (2009) that it is possible to add an ocean layer to the climate model, so a logical
next step would be to perform the economic analyses of this paper with an adapted climate
model. The results could then be compared to see the impact of the ocean or longitude
on steady state distributions. The paper by Franning and Weaver (1996) investigates an
energy and moisture balance model that has many of the same di↵usion-type operators as
the energy balance model in our paper. The methods that we present apply directly to their
model as well, so the issue of robustness to the number of modes can be raised. These are
both potentially interesting and important areas of further research in the field of climate-
economics.
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A

We derive the exact solution to the temperature problem for a two-mode form for the mean
annual distribution of solar radiation energy and the co-albedo function.

We use the following properties of the Legendre polynomials

d

dx

✓
(1� x2)

d

dx
P
n

(x)

◆
+ n(n+ 1)P

n

(x) = 0, (142)

(n+ 1)P
n+1(x) = (2n+ 1)P

n

(x)� nP
n�1(x), (143)ˆ 1

�1

P
n

(x)P
m

(x)dx = hP
n

(x), P
m

(x)i = 2�
nm

2n+ 1
, (144)

where
�
nm

= 0 for n 6= m, �
nm

= 1 for n = m, (145)

to derive certain relations listed below.

A.1 Functional Form

The 2nd, 4th, 6th, and 8th order Legendre polynomials are, respectively,

P2(x) =
1

2
(3x2 � 1), (146)

P4(x) =
1

8
(35x4 � 30x2 + 3), (147)

P6(x) =
1

16
(231x6 � 315x4 + 105x2 � 5), (148)

and

P8(x) =
1

128
(6435x8 � 12012x6 + 6930x4 � 1260x2 + 35). (149)

A.2 Derivations

Since

P 2
2 (x) =

✓
1

2
(3x2 � 1)

◆2

=
1

4
(9x4 � 6x2 + 1), (150)

it follows from (146) that

x2 =
1

3
(2P2 + 1). (151)

Substituting (151) into the (147) we get

x4 =
1

35
(8P4(x) + 30(

1

3
(2P2(x) + 1))� 3)

=
1

35
(8P4(x) + 20P2(x) + 7).

(152)
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Substituting (151) and (152) into (150) gives

P 2
2 (x) =

18

35
P4(x) +

2

7
P2(x) +

1

5
. (153)

We use (7) and (153) to write QS(x)↵(x) in (11) as

QS(x)↵(x) = Q(↵0S0 + (↵0S2 + ↵2S0)P2(x) + ↵2S2P
2
2 (x))

= Q

✓
↵0S0 + ↵2S2

✓
18

35
P4(x) +

2

7
P2(x) +

1

5

◆
+ (↵0S2 + ↵2S0)P2(x)

◆

= Q

✓
↵0S0 +

18

35
↵2S2P4(x) +

✓
2

7
↵0S2 + ↵2S0

◆
P2(x) +

1

5
↵2S2

◆
.

(154)

We write T̂ (x, t) =
P

k�0 T2kP2k(x). Using (142), (143), and (154) into (11) we find

D
X

k�0

2k(2k + 1)T2kP2k(x) + B
X

k�0

T2kP2k(x) + A =

h(t) +Q

✓
↵0S0 +

18

35
↵2S2P4(x) +

✓
2

7
↵0S2 + ↵2S0

◆
P2(x) +

1

5
↵2S2

◆
.

(155)

Multiplying (166) by P
n

(x) and integrating from �1 to 1, for each n 2 {0, 2, 4}, we obtain

BT0(t) = �A+ h(t) +Q

✓
1

5
↵2S2 + ↵0S0

◆
, (156)

(B + 6D)T2(D) = Q

✓
2

7
↵2S2 + ↵0S2 + ↵2S0

◆
, (157)

and

(B + 20D)T4(D) =
18

35
↵2S2, (158)

while, for k � 3, T2k = 0.

B

We derive the exact solution to the temperature problem for a four-mode form for the mean
annual distribution of solar radiation energy and the co-albedo function.

It follows from (146) and (147) that

P2(x)P4(x) =
1

2
(3x2 � 1)

1

8
(35x4 � 30x2 + 3)

=
1

16
(105x6 � 125x4 + 39x2 � 3).

(159)

Substituting (151) and (152) into the equation for P6(x) yields

x6 =
1

231
(16P6(x) + 315x4 � 105x2 + 5)

=
1

231
(16P6(x) +

315

35
(8P4(x) + 20P2(x) + 7)� 105

3
(2P2(x) + 1) + 5)

=
16

231
P6(x) +

24

77
P4(x) +

10

21
P2 +

1

7
.

(160)
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Substituting (151), (152), and (160) into (159) gives

P2(x)P4(x) =
1

16

✓
105

✓
16

231
P6(x) +

24

77
P4(x) +

10

21
P2 +

1

7

◆

� 125

35
(8P4(x) + 20P2(x) + 7) +

39

3
(2P2(x) + 1)� 3

◆

=
5

11
P6(x) +

20

77
P4(x) +

2

7
P2(x).

(161)

Hence (147) gives

P 2
4 (x) =

✓
1

8
(35x4 � 30x2 + 3)

◆2

=
1

16
(1225x8 � 2100x6 + 110x4 � 180x2 + 9), (162)

and, therefore,

x8 =
1

6435
(128P8(x)� 12012x6 + 6930x4 � 1260x2 + 35). (163)

Using (151), (152), (160), and (163) in (162) yields

P 2
4 (x) =

490

1287
P8(x)�

1645

24

✓
16

231
P6(x) +

24

77
P4(x) +

10

21
P2 +

1

7

◆

+
7895

208

✓
1

35
(8P4(x) + 20P2(x) + 7)

◆
� 7505

1144

✓
1

3
(2P2(x) + 1)

◆
+

10079

41184

=
490

1287
P8(x)�

470

99
P6(x)�

25401

2002
P4(x)�

42475

2772
P2(x)�

1193

288
.

(164)

We use (8), (153), (161), and (164) to write QS(x)↵(x) in (11) as

QS(x)↵(x) =Q(↵0S0 + (↵0S2 + ↵2S0)P2(x) + (↵0S4 + ↵4S0)P4(x)

+ (↵2S4 + ↵4S2)P2(x)P4(x) + ↵2S2P
2
2 (x) + ↵4S4P

2
4 (x))

=Q
⇣
↵0S0 + (↵0S2 + ↵2S0)P2(x) + (↵0S4 + ↵4S0)P4(x)

+ (↵2S4 + ↵4S2)

✓
5

11
P6(x) +

20

77
P4(x) +

2

7
P2(x)

◆

+ ↵2S2

✓
18

35
P4(x) +

2

7
P2(x) +

1

5

◆

+ ↵4S4

✓
490

1287
P8(x)�

470

99
P6(x)�

25401

2002
P4(x)�

42475

2772
P2(x)�

1193

288

◆◆
.

(165)
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We write T̂ (x, t) =
P

k�0 T2kP2k(x). Inserting (142), (143), and (165) in (11) we find

D
X

k�0

2k(2k + 1)T2kP2k(x) + B
X

k�0

T2kP2k(x) + A =

h(t) +Q
⇣
↵0S0 + (↵0S2 + ↵2S0)P2(x) + (↵0S4 + ↵4S0)P4(x)

+ (↵2S4 + ↵4S2)

✓
5

11
P6(x) +

20

77
P4(x) +

2

7
P2(x)

◆

+ ↵2S2

✓
18

35
P4(x) +

2

7
P2(x) +

1

5

◆

+ ↵4S4

✓
490

1287
P8(x)�

470

99
P6(x)�

25401

2002
P4(x)�

42475

2772
P2(x)�

1193

288

◆◆
.

(166)

Multiplying (166) by P
n

(x) and integrating from �1 to 1 for each n 2 {0, 2, 4, 6, 8} we get

BT0(t) = �A+Q

✓
1

5
↵2S2 �

1193

288
↵4S4 + ↵0S0

◆
+ h(t), (167)

(B + 6D)T2(D) =
2

7
(↵2S4 + ↵4S2)�

42475

2772
↵4S4 +

2

7
↵2S2 + ↵0S2 + ↵2S0, (168)

(B + 20D)T4(D) =
20

77
(↵2S4 + ↵4S2)�

25401

2002
↵4S4 +

18

35
↵2S2 + ↵0S4 + ↵4S0, (169)

(B + 42D)T6(D) =
5

11
(↵2S4 + ↵4S2)�

470

99
↵4S4, (170)

(B + 72D)T8(D) =
490

1287
↵4S4, (171)

and T2k = 0, for all k � 5.

C

We derive the steady state distributions for the socially optimal quantities.

C.1 Steady State

Let k̄(x) = K(x)
L

, q̄(x) = q(x)
L

, c̄(x) = C(x)
L

denote per capita quantities. Then, the output per

capita and the utility at each location are ⌦(T̂ (x, t))k̄(x)↵k q̄(x)↵q and ln(c̄(x)), respectively.
To obtain the steady state, we set �̇

K

(x, t) = 0 in (47) and divide by (46). Recalling that
we set all the derivatives in (47)-(50) to be zero, we find

↵
K

↵
q

q̄(x)

k̄(x)
= �(⇢+ �)

�

�
K

�
M

(172)

and

q̄(x) = �(⇢+ �)

�

�
K

�
M

↵
q

↵
K

k̄(x). (173)
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It follows from (45) that

�
K

=
v(x)

c̄(x)
and c̄(x) = A⌦(T̂ (x))k̄(x)↵K q̄(x)↵q � �k̄(x) (174)

and, hence, in view of (172),

q̄(x) = �(⇢+ �)

��
M

↵
q

↵
K

v(x)

A⌦(T̂ (x))k̄(x)↵K�1q̄(x)↵q � �k̄(x)
. (175)

On the other hand, (47) at the steady state yields

A⌦(T̂ (x))k̄(x)↵K�1q̄(x)↵q =
(⇢+ �)

↵
K

. (176)

From (3) the steady state stock of CO2 is

M =
�

m

ˆ
X

Lq̄(x)dx =
�

m

ˆ
X

L

✓
�(⇢+ �)

��
M

↵
q

(⇢+ (1� ↵
K

)�)
v(x)

◆
dx. (177)

C.2 Exponential Damage Function

Using ⌦(T̂ (x, t)) = exp
⇣
��T̂ (x, t)

⌘
, so that ⌦0

T0
= ��⌦(T̂ (x, t)), and (48) - (50), we obtain

at the steady state

�⇤
M

=
�
T0

(⇢+m)

Z1

1 + M

⇤

M0

(178)

and

�⇤
T0

= � �

(1 + ⇢)

ˆ
X

v(x)

c̄(x)
(A⌦(T̂ (x))k̄(x)↵K q̄(x)↵q)dx. (179)

Since (47) and (50) yield

c̄(x) = k̄(x)(A⌦(T̂ (x))k̄(x)↵K�1q̄(x)↵q � �) (180)

and
↵
K

A⌦(T̂ (x))k̄(x)↵K�1q̄(x)↵q = ⇢+ �, (181)

substituting into (179), we obtain the steady state value of �⇤
T0

�⇤
T0

= � �

(1 + ⇢)

ˆ
X

(⇢+ �)

(⇢+ (1� ↵
K

)�)
v(x)dx = ���0 < 0, (182)

where

�0 =
1

(1 + ⇢)

(⇢+ �)

(⇢+ (1� ↵
K

)�)

ˆ
X

v(x)dx > 0. (183)

Then,

�⇤
M

= � ��0

(⇢+m)

Z1

(1 + M

⇤

M0
)
< 0. (184)
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Since �⇤
M

does not depend on x, using (184) into (177), we can find the steady state value

M⇤ = � 1

m�⇤
M

�1, (185)

where

�1 =

ˆ
X

↵
q

(⇢+ �)L

(⇢+ (1� ↵
K

)�)
v(x)dx, (186)

which are both independent of D.
Combining (184) and (185) we get

M⇤ =
1

m

(⇢+m)

�

(1 + M

⇤

M0
)

Z1

�1

�0

=

✓
1 +

M⇤

M0

◆
(⇢+m)

m�

1

Z1
(1 + ⇢)↵

q

L,

(187)

which implies

M⇤ =
M0�2

M0 � �2
, (188)

with

�2 =
(⇢+m)

m�

(1 + ⇢)

Z1
↵
q

L, (189)

subject to the constraint

1� �2

M0
> 0. (190)

This condition is satisfied by the parameter values in Table 2.
Combining all of the above results, we deduce that the steady state values for the rest of

the variables are

T ⇤
[2],0 =Z[2],1ln

✓
1 +

M⇤

M0

◆
+ Z[2],0, (191)

T ⇤
[4],0 =Z[4],1ln

✓
1 +

M⇤

M0

◆
+ Z[4],0, (192)

T̂ ⇤
[2](x) =Z[2],0 + Z[2],1ln

✓
1 +

M⇤

M0

◆
+

Z[2],2

1 + 6D
P2(x) +

Z[2],4

1 + 20D
P4(x), (193)

T̂ ⇤
[4](x) =Z[4],0 + Z[4],1 ln

✓
1 +

M⇤

M0

◆
+

Z[4],2

B + 6D
P2(x)

+
Z[4],4

B + 20D
P4(x) +

Z[4],6

B + 42D
P6(x) +

Z[4],8

B + 72D
P8(x)

(194)
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and

q̄⇤(x) =� (⇢+ �)

��⇤
M

↵
q

(⇢+ (1� ↵
K

)�)
v(x) = (1 + ⇢)(⇢+m)

↵
q

��

(1 + M

⇤

M0
)

Z1
v(x), (195)

k̄⇤(x) =

✓
⇢+ �

↵
K

◆ 1
↵K�1

(A⌦(T̂ ⇤(x)))
1

1�↵K q̄⇤(x)
1

1�↵K

= �3⌦(T̂
⇤(x))

1
1�↵K = �3exp

 
�T̂ ⇤(x)

1� ↵
K

!
,

(196)

c̄⇤(x) =A⌦(T̂ ⇤(x))k̄⇤(x)↵K q̄⇤(x)↵q � �k̄⇤(x), (197)

�⇤
K

(x) =
v(x)

c̄⇤(x)
, (198)

where

�3 =

✓
⇢+ �

↵
K

◆
(Aq̄⇤(x))

1
1�↵K . (199)

Using the specific values of the coe�cients leads to the signs

Z[2],0, Z[2],1, Z[2],4 > 0, Z[2],2 < 0 (200)

and
Z[4],0, Z[4],1, Z[4],8 > 0, Z[4],2, Z[4],4, Z[4],6 < 0. (201)
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