
Electronic copy available at: http://ssrn.com/abstract=2087677

R
D

C
E

P
 

W
O

R
K

IN
G

 
P

A
P

E
R

 
S

E
R

IE
S


Working Paper No.12-09


The Center for Robust Decision Making 
on Climate and Energy Policy


Dynamic Programming with Hermite 
Interpolation  
 

Yongyang Cai  and Kenneth L. Judd 

June, 2012




Electronic copy available at: http://ssrn.com/abstract=2087677



© 2012 Yongyang Cai  and Kenneth L. Judd. All rights reserved. Short sections of text, not to exceed two paragraphs, 
may be quoted without explicit permission provided that full credit, including © notice, is given to the source. 

!
RDCEP working papers represent un‐refereed work‐in‐progress by researchers who are solely responsible for the content 
and any views expressed therein. Any comments on these papers will be welcome and should be sent to the author(s) by 
email. !





Electronic copy available at: http://ssrn.com/abstract=2087677

Dynamic Programming with Hermite Interpolation

Yongyang Cai

Hoover Institution, 424 Galvez Mall, Stanford University, Stanford, CA, 94305

Kenneth L. Judd⇤

Hoover Institution, 424 Galvez Mall, Stanford University, Stanford, CA, 94305

Abstract

Numerical dynamic programming algorithms typically use Lagrange data to

approximate value functions. This paper uses Hermite data obtained from

the optimization step and applies Hermite interpolation to construct approx-

imate value functions. Several examples show that Hermite interpolation sig-

nificantly improves the accuracy of value function iteration with very little

extra cost.
Keywords: Numerical dynamic programming, value function iteration,

Hermite interpolation

JEL Classification: C63

⇤The corresponding is Dr. Kenneth L. Judd, Hoover Institution, 424 Galvez Mall,
Stanford University, Stanford, CA, 94305. Phone: 650-723-5866; fax: 650-723-1687. E-
mail: kennethjudd@mac.com.

Email addresses: yycai@stanford.edu (Yongyang Cai), kennethjudd@mac.com
(Kenneth L. Judd)

Preprint submitted to February 13, 2012



1. Introduction

All dynamic economic problems are multi-stage decision problems, often

with nonlinearities that make them numerically challenging. Dynamic pro-

gramming (DP) is the standard approach for dynamic optimization problems.

If the state and control variables are continuous quantities, then the value

function is continuous in the state and often differentiable. A numerical pro-

cedure needs to approximate the value function, but any such approximation

will be imperfect since computers cannot represent the entire space of con-

tinuous functions. Many DP problems are solved by value function iteration,

where the period t value function is computed from the period t + 1 value

function, and the value function is known at the terminal time T .

DP algorithms typically use Lagrange data to approximate value func-

tions, where the Lagrange data comes from solving an optimization problem.

However, that same optimization problem can also compute the slope of the

value function at essentially no cost. This paper proposes using both the

Lagrange data and slope information to use Hermite interpolation for con-

structing the value function. We explore the Hermite interpolation method

in DP in detail. First, we show how to write an optimization problem so

that the slope of the value function is the value of the shadow price of a

constraint. Second, we demonstrate that using Hermite interpolation in DP

problems with one continuous dimension improves accuracy by almost the

same as if we doubled the number of points used in approximating the value

function. Therefore, Hermite interpolation significantly improves value func-

2



tion iteration methods with very little extra cost.

This paper uses only Chebyshev polynomial approximation methods.

Hermite interpolation can also be used in combination with the Schumaker

shape-preserving spline method (Schumaker, 1983), or a rational function

spline method (Cai and Judd, 2012a).

The paper is organized as follows. Section 2 introduces numerical DP

algorithm. Section 3 describes Chebyshev interpolation and then introduces

Chebyshev-Hermite interpolation. Section 4 presents the DP algorithm with

Hermite interpolation. Section 5 and 6 give some numerical examples solv-

ing optimal growth problems to show the power of the DP algorithm with

Hermite interpolation.

2. Numerical Methods for DP

In DP problems, if state variables and control variables are continuous

quantities and value functions are continuous, then we need to approximate

the value functions. We focus on using a finitely parameterizable collection

of functions to approximate value functions, V (x) ⇡ ˆV (x; c), where c is a

vector of parameters. The functional form ˆV may be a linear combination

of polynomials, or a rational function, or a neural network function, or some

other parameterization specially designed for the problem. After the func-

tional form is chosen, we find the vector of parameters, c, such that ˆV (x; c)

approximately satisfies the Bellman equation (Bellman, 1957) as accurately

as possible. Value function iteration is often used to approximately solve the

3



Bellman equation (Judd, 1998).

The general DP problem is represented by the Bellman equation:

V
t

(x, ✓) = max

a2D(x,✓,t)
u
t

(x, a) + �E
�
V
t+1(x

+, ✓+) | x, ✓, a
 
, (1)

s.t. x+
= g

t

(x, ✓, a,!),

✓+ = h
t

(✓, ✏),

where x is the continuous state, ✓ is the discrete state, V
t

(x, ✓) is the value

function at time t  T where V
T

(x, ✓) is given, a is the vector of action

variables and is constrained by a 2 D(x, ✓, t), x+ is the next-stage continuous

state with transition function g
t

at time t, ✓+ is the next-stage discrete state

with transition function h
t

at time t, ! and ✏ are two random variables,

u
t

(x, a) is the utility function at time t, � is the discount factor, and E{·} is

the expectation operator.

In the simpler case where the discrete state ✓ does not exist and the

continuous state x is not random, the Bellman equation (1) becomes

V
t

(x) = max

a2D(x,t)
u
t

(x, a) + �V
t+1(x

+
), (2)

s.t. x+
= g

t

(x, a).

This simpler problem can be solved by Algorithm 1 which can be naturally

extended to solve the general Bellman equation (1).

Algorithm 1. Numerical Dynamic Programming with Value Function Iter-

ation for Finite Horizon Problems

4



Initialization. Choose the approximation nodes, X
t

= {x
it

: 1  i 

m
t

} for every t < T , and choose a functional form for ˆV (x; c). Let

ˆV (x; cT ) ⌘ V
T

(x). Then for t = T � 1, T � 2, . . . , 0, iterate through

steps 1 and 2.

Step 1. Maximization step. Compute

v
i

= max

ai2D(xi,t)
u
t

(x
i

, a
i

) + � ˆV (x+
i

; ct+1
)

s.t. x+
i

= g
t

(x
i

, a
i

),

for each x
i

2 X
t

, 1  i  m
t

.

Step 2. Fitting step. Using an appropriate approximation method, compute

the ct such that ˆV (x; ct) approximates (x
i

, v
i

) data.

Algorithm 1 shows that there are two main components in value function

iteration for deterministic DP problems: optimization, and approximation.

In this paper we focus on approximation methods. Detailed discussion of

numerical DP can be found in Cai (2009), Judd (1998) and Rust (2008).

3. Approximation

An approximation scheme consists of two parts: basis functions and ap-

proximation nodes. Approximation nodes can be chosen as uniformly spaced

nodes, Chebyshev nodes, or some other specified nodes. From the viewpoint

of basis functions, approximation methods can be classified as either spec-

tral methods or finite element methods. A spectral method uses globally

nonzero basis functions �
j

(x) such that ˆV (x; c) =
P

n

j=0 cj�j

(x) is a degree-n

5



approximation. Examples of spectral methods include ordinary polynomial

approximation, Chebyshev polynomial approximation, and shape-preserving

Chebyshev polynomial approximation (Cai and Judd, 2012b). In contrast, a

finite element method uses locally basis functions �
j

(x) that are nonzero over

sub-domains of the approximation domain. Examples of finite element meth-

ods include piecewise linear interpolation, Schumaker interpolation, shape-

preserving rational function spline Hermite interpolation (Cai and Judd,

2012a), cubic splines, and B-splines. See Cai (2009), Cai and Judd (2010),

and Judd (1998) for more details.

3.1. Chebyshev Polynomials and Interpolation

Chebyshev basis polynomials on [�1, 1] are defined as T
j

(z) = cos(j cos�1
(z)),

while general Chebyshev basis polynomials on [a, b] are defined as T
j

((2x �

a � b)/(b � a)) for j = 0, 1, 2, . . .. These polynomials are orthogonal under

the weighted inner product: hf, gi =
´

b

a

f(x)g(x)w(x)dx with the weighting

function w(x) =

�
1� ((2x� a� b)/(b� a))2

��1/2. A degree n Chebyshev

polynomial approximation for V (x) on [a, b] is

ˆV (x; c) =
1

2

c0 +

nX

j=1

c
j

T
j

✓
2x� a� b

b� a

◆
, (3)

where c
j

are the Chebyshev coefficients.

If we choose the Chebyshev nodes on [a, b]: x
i

= (z
i

+1)(b�a)/2+a with

z
i

= � cos ((2i� 1)⇡/(2m)) for i = 1, . . . ,m, and Lagrange data {(x
i

, v
i

) :

i = 1, . . . ,m} are given (where v
i

= V (x
i

)), then the coefficients c
j

in (3) can

6



be easily computed by the following formula,

c
j

=

2

m

mX

i=1

v
i

T
j

(z
i

), j = 0, . . . , n. (4)

The method is called the Chebyshev regression algorithm in Judd (1998).

When the number of Chebyshev nodes is equal to the number of Cheby-

shev coefficients, i.e., m = n + 1, then the approximation (3) with the coef-

ficients given by (4) becomes Chebyshev polynomial interpolation (which is

a Lagrange interpolation), as ˆV (x
i

; c) = v
i

, for i = 1, . . . ,m.

3.2. Expanded Chebyshev Polynomial Interpolation

It is often more stable to use the expanded Chebyshev polynomial inter-

polation (Cai, 2009), as the above standard Chebyshev polynomial interpo-

lation gives poor approximation in the neighborhood of end points. That is,

we use the following formula to approximate V (x),

ˆV (x; c) =
1

2

c0 +
nX

j=1

c
j

T
j

 
2x� ea�eb
eb� ea

!
, (5)

where ea = a� � and eb = b+ � with � = (z1+1)(a� b)/(2z1). Moreover, if we

choose the expanded Chebyshev nodes on [a, b]: x
i

= (z
i

+1)(

eb�ea)/2+ea, then

the coefficients c
j

can also be calculated easily by the expanded Chebyshev

regression algorithm (Cai, 2009), which is similar to (4).

3.3. Chebyshev-Hermite Interpolation

Chebyshev interpolation does not use slope information. A more efficient

approach is to compute and apply the slopes to get a closer approximation.

7



If we have Hermite data {(x
i

, v
i

, s
i

) : i = 1, . . . ,m} on [a, b], where x
i

=

(z
i

+ 1)(

eb � ea)/2 + ea (with z
i

= � cos ((2i� 1)⇡/(2m))) are the expanded

Chebyshev nodes, v
i

= V (x
i

) and s
i

= V 0
(x

i

), then the following system

of 2m linear equations can produce coefficients for degree 2m� 1 expanded

Chebyshev polynomial interpolation on the Hermite data:

1

2

c0 +
2m�1X

j=1

c
j

T
j

(z
i

) = v
i

, i = 1, . . . ,m,

2

eb� ã

2m�1X

j=1

c
j

T 0
j

(z
i

) = s
i

, i = 1, . . . ,m,

where T
j

(z) are Chebyshev basis polynomials. After the coefficients are com-

puted from the above linear system, we can use the polynomial (5) to ap-

proximate V (x) by choosing the degree n = 2m� 1.

4. DP with Hermite Interpolation

The maximization step in value function iteration is

v
i

= V
t

(x
i

) = max

ai2D(xi,t)
u
t

(x
i

, a
i

) + �V
t+1(x

+
i

),

s.t. x+
i

= g
t

(x
i

, a
i

),

for each pre-specified approximation node x
i

, i = 1, . . . ,m. Then it uses the

Lagrange data set {(x
i

, v
i

) : i = 1, . . . ,m} in the fitting step to construct an

approximation ˆV
t

(x) of the value function. However, we can also compute

information about slope of the value function at each approximation node

almost at no cost, and make the function approximation more accurate. This

8



slope information allows us to use Hermite interpolation and make the nu-

merical DP algorithm more efficient and accurate.

The envelope theorem tells us how to calculate the first derivative of a

function defined by a maximization operator.

Theorem 1 (Envelope Theorem). Let

H(x) = max

a

f(x, a) (6)

s.t. g(x, a) = 0,

h(x, a) � 0.

Suppose that a⇤(x) is the optimizer of (6), and that �⇤
(x) is the vector

of shadow prices for the equality constraints g(x, a) = 0, and µ⇤
(x) is

the vector of shadow prices of the inequality constraints h(x, a) = 0,.
Then

@H(x)

@x
=

@f

@x
(x, a⇤(x)) + �⇤

(x)>
@g

@x
(x, a⇤(x)) + µ⇤

(x)>
@h

@x
(x, a⇤(x)).

(7)

Formula (7) expresses the value of @H(x)/@x in terms of the shadow prices,

objective gradient, constraints gradients at the optimum.

However, Formula (7) is often costly to evaluate. Fortunately we can

rewrite the optimization problem so that solver outputs the value of @H(x)/@x,

in a very simple and clean formula. Corollary 1 shows us how.

Corollary 1. The optimization problem,

H(x) = max

a

f(x, a) (8)

s.t. g(x, a) = 0,

h(x, a) � 0,

9



is equivalent to

H(x) = max

a,y

f(y, a) (9)

s.t. g(y, a) = 0,

h(y, a) � 0,

x� y = 0,

and
@H(x)

@x
= �⇤

(x),

where �⇤
(x) is the vector of shadow prices of the trivial constraint x�

y = 0.

The corollary follows from the envelope theorem. In Corollary 1, we take

the optimization problem (8), add variable y, add constraint x� y = 0, and

replace x by y in the objective function and all the other constraints. If we

use this reformulation in an optimization solver, then @H(x)/@x is the vector

of shadow prices of the trivial constraint x�y = 0 in the output of the solver.

This frees us from computing the more complex formula (7) in the envelope

theorem.

Using Corollary 1, Algorithm 2 shows how to efficiently use Hermite in-

terpolation in the numerical DP algorithms.

Algorithm 2. Numerical Dynamic Programming with Value Function Iter-

ation and Hermite Interpolation for Finite Horizon Problems

Initialization. Choose the approximation nodes, X
t

= {x
it

: 1  i 

m
t

} for every t < T , and choose a functional form for ˆV (x; c). Let

10



ˆV (x; cT ) ⌘ V
T

(x). Then for t = T � 1, T � 2, . . . , 0, iterate through

steps 1 and 2.

Step 1. Maximization step. For each x
i

2 X
t

, 1  i  m
t

, compute

v
i

= max

ai2D(yi,t),yi
u
t

(y
i

, a
i

) + � ˆV (x+
i

; ct+1
),

s.t. x+
i

= g
t

(y
i

, a
i

),

x
i

� y
i

= 0,

and
s
i

= �⇤
i

,

where �⇤
i

is the vector of shadow prices of the constraint x
i

� y
i

= 0.

Step 2. Hermite fitting step. Using an appropriate approximation method,

compute the ct such that ˆV (x; ct) approximates (x
i

, v
i

, s
i

) data.

We can easily extend the above algorithm to solve the general DP model (1).

5. Examples for Deterministic Optimal Growth Problems

A deterministic optimal growth problem is to find the optimal consump-

tion function and the optimal labor supply function such that the total utility

over the T -horizon time is maximal1, i.e.,

V0(k0) = max

kt,ct,lt

T�1X

t=0

�tu(c
t

, l
t

) + �TV
T

(k
T

), (10)

s.t. k
t+1 = F (k

t

, l
t

)� c
t

, 0  t < T,

k  k
t

 ¯k, 1  t  T,

1Please see Judd (1998) for a detailed description of this.

11



where k
t

is the capital stock at time t with k0 given, c
t

is the consumption, l
t

is the labor supply, k and ¯k are given lower and upper bound of k
t

, � is the

discount factor, F (k, l) is the aggregate production function, V
T

(x) is a given

terminal value function, and u(c
t

, l
t

) is the utility function. This objective

function is time-separable, so this can be modeled as a DP problem (2), and

then we can use DP methods to solve it.

In the examples, the discount factor is � = 0.95, the aggregate production

function is F (k, l) = k +Ak↵l1�↵ with ↵ = 0.25 and A = (1� �)/(↵�). The

state range of capital stocks is set as [0.2, 3], i.e., k = 0.2 and k = 3. The

utility function is

u(c, l) =
(c/A)1�� � 1

1� �
� (1� ↵)

l1+⌘ � 1

1 + ⌘
. (11)

The functional forms for utility and production imply that the steady state

of the infinite horizon deterministic optimal growth problems is k
ss

= 1, and

the optimal consumption and the optimal labor supply at k
ss

are respectively

c
ss

= A and l
ss

= 1.

12



5.1. DP Solution of Deterministic Optimal Growth Problems

The DP formulation of the deterministic optimal growth problem (10) in

Algorithm 2 is:

V
t

(k) = max

k

+
,c,l,y

u(c, l) + �V
t+1(k

+
), (12)

s.t. k+
= y + f(y, l)� c,

k � y = 0,

k  k+  ¯k,

for t < T , where the terminal value function V
T

(k) is given. Here k is the

state variable and (c, l) are the control variables, and the dummy variable y

and the trivial constraint k�y = 0 are used in order to get the slopes of value

functions directly from the optimization solver as described in Algorithm 2.

5.2. Error Analysis

We next use some basic examples to study the usefulness of Hermite

interpolation for DP. More specifically, we take finite-horizon versions of the

optimal growth problem, compute the “true” optimal solution on a large set of

test points for initial capital k0 2 [k, ¯k], and then compare those results with

the computed optimal solution from numerical DP algorithms. To get the

“true” optimal solution, we use nonlinear programming to solve the optimal

growth model (10), for every test point of initial capital k0. In the examples,

we choose SNOPT (Gill et al., 2005) in GAMS environment (McCarl, 2011)

as the optimizer.

13



Table 1 lists errors of optimal solutions computed by numerical DP al-

gorithms with or without Hermite information when T = 100 and terminal

value function V
T

(k) ⌘ 0. The computational results of numerical DP algo-

rithms with or without Hermite information are given by our GAMS code.

We use the expanded Chebyshev polynomial interpolation as the approxima-

tion method, and we use SNOPT as the optimizer in the maximization step

of DP. In Table 1, on the same m expanded Chebyshev nodes, Algorithm 1

uses degree m�1 expanded Chebyshev polynomial interpolation on Lagrange

data, while Algorithm 2 uses degree 2m�1 expanded Chebyshev polynomial

interpolation on Hermite data.

The errors for optimal consumption at time 0 are computed by

max

k2[0.2,3]

|c⇤0,DP(k)� c⇤0(k)|
|c⇤0(k)|

,

where c⇤0,DP is the optimal consumption at time 0 computed by numerical

DP algorithms on the model (12), and c⇤0 is the “true” optimal consumption

directly computed by nonlinear programming on the model (10). The er-

rors for optimal labor supply at time 0, l⇤0,DP, have the similar computation

formula.

Table 1 shows that value function iteration with Hermite interpolation

is more accurate than Lagrange interpolation, with about one or two digits

accuracy improvement. For example, data line 1 in Table 1) assumes � = 0.5,

⌘ = 0.1, and m = 5 approximation nodes. For this case, the error in con-

sumption is 0.12 for Lagrange data, and drops to 0.012 when we use Hermite

14



Table 1: Errors of optimal solutions computed by numerical DP algorithms with expanded
Chebyshev interpolation on m expanded Chebyshev nodes using Lagrange data vs. Her-
mite data for deterministic growth problems

error of c⇤0 error of l⇤0
� ⌘ m

0.5 0.1 5
10
20

0.5 1 5
10
20

2 0.1 5
10
20

2 1 5
10
20

8 0.1 5
10
20

8 1 5
10
20

Lagrange Hermite
1.2(�1) 1.2(�2)

6.8(�3) 3.1(�5)

2.3(�5) 1.5(�6)

1.4(�1) 1.4(�2)

7.7(�3) 3.7(�5)

2.6(�5) 6.5(�6)

5.5(�2) 6.1(�3)

3.5(�3) 2.1(�5)

1.6(�5) 1.4(�6)

9.4(�2) 1.1(�2)

5.7(�3) 3.9(�5)

2.8(�5) 4.7(�6)

2.0(�2) 2.2(�3)

1.2(�3) 8.5(�6)

6.1(�6) 1.0(�6)

6.6(�2) 7.2(�3)

3.0(�3) 2.6(�5)

2.0(�5) 0.0(�7)

Lagrange Hermite
1.9(�1) 1.8(�2)

9.9(�3) 4.4(�5)

3.2(�5) 2.3(�6)

6.1(�2) 5.6(�3)

3.1(�3) 1.6(�5)

1.1(�5) 3.0(�6)

2.7(�1) 3.6(�2)

2.0(�2) 1.2(�4)

9.1(�5) 7.6(�6)

1.3(�1) 1.7(�2)

9.2(�3) 6.1(�5)

4.3(�5) 8.0(�6)

3.6(�1) 4.9(�2)

2.7(�2) 1.9(�4)

1.4(�4) 4.4(�6)

3.4(�1) 4.5(�2)

2.0(�2) 1.7(�4)

1.3(�4) 2.1(�7)

Note: a(k) means a⇥ 10

k.

15



interpolation. Similarly the error in labor supply is 0.19 for Lagrange data,

and drops to 0.018 when we use Hermite interpolation. For both consumption

and labor supply, Hermite interpolation is about 10 times more accurate than

Lagrange interpolation using 5 approximation nodes. The next line chooses

m = 10 approximation nodes, and in this case both consumption and labor

supply errors drop by a factor about 200 when we switch from Lagrange to

Hermite interpolation. The third line in Table 1 chooses m = 20. In this

case, the switch reduces errors by a factor of about 15.

The rest of Table 1 examines different � and ⌘, and shows the same

patterns for the reduction of errors when we switch from Lagrange to Hermite

interpolation. Table 1 assumes T = 100 and V
T

(k) ⌘ 0. We also have similar

results for different T = 2, 3, 5, 10, 50 and/or other terminal value functions

V
T

(k) = u(F (k, 1)� k, 1)/(1� �) and V
T

(k) = �100(k � 1)

2. Moreover, we

find that when T increases, the errors do not accumulate. This follows that

the backward value function iterations are stable for these examples. The

approximated value functions have similar accuracy results.

Since the slope information of value functions can be obtained almost

freely in computation cost, Algorithm 2 has almost twice efficiency of Al-

gorithm 1. The computation times of both numerical DP algorithms also

show that they are almost proportional to number of nodes, i.e., number of

optimization problems in the maximization step of numerical DP algorithm,

regardless of approximation using Lagrange or Hermite data.

16



6. Examples for Stochastic Optimal Growth Problems

When the capital stock is dependent on a random economic shock ✓, the

optimal growth problem (10) becomes a stochastic dynamic optimization

problem,

V0(k0, ✓0) = max

kt,ct,lt

E
(

T�1X

t=0

�tu(c
t

, l
t

) + �TV
T

(k
T

, ✓
T

)

)
, (13)

s.t. k
t+1 = F (k

t

, l
t

, ✓
t

)� c
t

, 0  t < T,

✓
t+1 = h(✓

t

, ✏
t

), 0  t < T,

k  k
t

 ¯k, 1  t  T,

where ✓
t

is a discrete time process with its transition function h, ✏
t

is a seri-

ally uncorrelated random process, and F (k, l, ✓) is the aggregate production

function dependent on the economic shock.

In the examples, the discount factor is � = 0.95, the aggregate production

function is F (k, l, ✓) = k + ✓Ak↵l1�↵ with ↵ = 0.25 and A = (1 � �)/(↵�),

and the utility function is the same with (11). The terminal value function is

V
T

(k, ✓) = u(F (k, 1, 1)� k, 1)/(1� �). The range of capital stocks is [0.2, 3],

i.e., k = 0.2 and k = 3. We assume that ✓
t

is a Markov chain, the possible

values of ✓
t

are #1 = 0.9 and #2 = 1.1, and the probability transition matrix

from ✓
t

to ✓
t+1 is 2

64
0.75 0.25

0.25 0.75

3

75 ,

for t = 0, . . . , T � 1.

17



6.1. DP Solution of Stochastic Optimal Growth Problems

The DP formulation of the stochastic optimal growth problem (13) in

stochastic extension of Algorithm 2 is:

V
t

(k, ✓) = max

k

+
,c,l,y

u(c, l) + �E
�
V
t+1(k

+, ✓+)
 
, (14)

s.t. k+
= F (y, l, ✓)� c,

✓+ = h(✓, ✏),

k � y = 0,

k  k+  ¯k,

for t < T , where k is the continuous state, ✓ is the discrete state, k+ and

✓+ are next-stage continuous and discrete states respectively, ✏ is a random

variable, and the terminal value function V
T

(k, ✓) is given.

6.2. Tree Method

To solve the stochastic model (13) using nonlinear programming, we can

apply a tree method that is a generalized approach from solving the deter-

ministic model (10) by nonlinear programming. Assume that ✓
t

is a Markov

chain with possible states, #1, . . . ,#m

, and the probability of going from state

#
i

to state #
j

in one step is

P(✓
t+1 = #

j

| ✓
t

= #
i

) = q
i,j

.

Therefore, from a given initial state at time 0 to a state at time t, there are

mt paths of ✓
t

, for 0  t  T . Since the next-stage capital is only dependent

18



on the current-stage state and control, there are only mt�1 paths of optimal

capital, from a given initial state at time 0 to a state at time t, for 1  t  T .

In a mathematical formula, given an initial state (k0, ✓0), the capital at path

n and time t+ 1 is

k
t+1,n = F

�
k
t,[(n�1)/m]+1, lt,n,#mod(n�1,m)+1

�
� c

t,n

,

for 1  n  mt, where mod(n� 1,m) is the remainder of division of (n� 1)

by m, and [(n� 1)/m] is the quotient of division of (n� 1) by m.

In the tree method, the goal is to choose optimal consumption c
t,n

and

labor supply l
t,n

to maximize the expected total utility, i.e.,

max

ct,n,lt,n

T�1X

t=0

�t

m

tX

n=1

(P
t,n

u(c
t,n

, l
t,n

)) + (15)

�T

m

T�1X

n=1

P
T�1,n

mX

j=1

q
mod(n�1,m)+1,jVT

(k
T,n

,#
j

),

where P
t,n

is the probability of path n from time 0 to time t with the following

recursive formula:

P
t+1,(n�1)m+j

= P
t,n

· q
mod(n�1,m)+1,j,

for j = 1, . . . ,m, n = 1, . . . ,mt and t = 1, . . . , T � 2, where P0,1 = 1 and

P1,j = P(✓1 = #
j

| ✓0) for a given ✓0.

It usually becomes infeasible for a nonlinear programming optimization

package to solve the stochastic problem (15) with high accuracy when T > 10

(but numerical DP algorithms can still solve it well), see Cai (2009). However,

19



in our examples, we have m = 2, so if we let T = 5, the tree method will

have an accurate optimal solution as the “true” solution which can be used

for error analysis of numerical DP algorithms.

6.3. Error Analysis

We examine the errors for the stochastic model in the same manner we

did for the deterministic optimal growth problems: We apply nonlinear pro-

gramming to get the “true” optimal solution on the model (15) for every test

point of initial capital k0 2 [k, ¯k] and every possible initial discrete state ✓0,

and then use them to check the accuracy of the computed optimal solution

from numerical DP algorithms on the model (14).

Table 2 lists errors of optimal solutions computed by numerical DP algo-

rithms with or without Hermite information when T = 5. The computational

results of numerical DP algorithms with or without Hermite information are

given by our GAMS code, where we use degree 2m�1 or m�1, respectively,

expanded Chebyshev polynomial interpolation on m expanded Chebyshev

nodes. And in the maximization step of DP, we use SNOPT.

The errors for optimal consumptions at time 0 are computed by

max

k2[0.2,3],✓2{0.9,1.1}

|c⇤0,DP(k, ✓)� c⇤0(k, ✓)|
|c⇤0(k, ✓)|

,

where c⇤0,DP is the optimal consumption at time 0 computed by numerical

DP algorithms on the model (14), and c⇤0 is the “true” optimal consumption

computed by nonlinear programming on the model (15). The similar formula

applies to compute errors for optimal labor supply at time 0.

20



From Table 2, we can also see the similar pattern shown in Table 1. That

is, value function iteration with Hermite interpolation is more accurate than

Lagrange interpolation, with about one to two digit accuracy improvement.

For example, data line 1 in Table 1) assumes � = 0.5, ⌘ = 0.1, and m = 5

approximation nodes. For this case, the error in consumption is 0.11 for

Lagrange data, and drops to 0.013 when we use Hermite interpolation. Sim-

ilarly the error in labor supply is 0.19 for Lagrange data, and drops to 0.018

when we use Hermite interpolation. For both consumption and labor sup-

ply, Hermite interpolation is about 10 times more accurate than Lagrange

interpolation using 5 approximation nodes. The next line chooses m = 10

approximation nodes, and in this case both consumption and labor supply

errors drop by a factor about 200 when we switch from Lagrange to Hermite

interpolation.

7. Conclusion

The paper has shown that the slope information of the value functions

can be obtained almost freely, and we use that information for Hermite in-

terpolation of the value function. The paper has applied the numerical DP

algorithm with Hermite interpolation to solve optimal growth problems and

then has shown that the DP method with Hermite interpolation is more

accurate and efficient than the one without Hermite interpolation.

21



Table 2: Errors of optimal solutions computed by numerical DP algorithms with expanded
Chebyshev interpolation on m expanded Chebyshev nodes using Lagrange data vs. Her-
mite data for stochastic growth problems

error of c⇤0 error of l⇤0
� ⌘ m

0.5 0.1 5
10
20

0.5 1 5
10
20

2 0.1 5
10
20

2 1 5
10
20

8 0.1 5
10
20

8 1 5
10
20

Lagrange Hermite
1.1(�1) 1.3(�2)

5.4(�3) 2.7(�5)

1.8(�5) 4.0(�6)

1.5(�1) 1.8(�2)

7.2(�3) 3.4(�5)

2.4(�5) 4.9(�6)

4.9(�2) 5.0(�3)

2.5(�3) 1.6(�5)

1.1(�5) 3.3(�6)

9.1(�2) 9.7(�3)

4.2(�3) 2.7(�5)

1.8(�5) 3.2(�6)

2.3(�2) 2.2(�3)

9.5(�4) 1.2(�5)

8.9(�6) 2.7(�6)

2.6(�1) 1.7(�2)

8.4(�3) 3.8(�5)

2.6(�5) 2.5(�6)

Lagrange Hermite
1.9(�1) 1.8(�2)

7.8(�3) 3.7(�5)

2.4(�5) 4.9(�6)

6.5(�2) 7.0(�3)

2.9(�3) 1.5(�5)

1.1(�5) 5.0(�6)

2.5(�1) 2.8(�2)

1.5(�2) 8.0(�5)

5.2(�5) 4.7(�6)

1.3(�1) 1.5(�2)

6.7(�3) 4.7(�5)

3.1(�5) 5.0(�6)

4.5(�1) 4.9(�2)

2.2(�2) 2.6(�4)

1.9(�4) 3.7(�6)

1.0(�0) 1.0(�1)

5.2(�2) 2.4(�4)

1.6(�4) 4.8(�6)

Note: a(k) means a⇥ 10

k.

22



[1] Bellman, R., 1957. Dynamic Programming. Princeton Univer-

sity Press.

[2] Cai, Y., 2009. Dynamic Programming and Its Application in

Economics and Finance. PhD thesis, Stanford University.

[3] Cai, Y., Judd, K.L., 2010. Stable and efficient computational

methods for dynamic programming. Journal of the European

Economic Association, Vol. 8, No. 2-3, 626–634.

[4] Cai, Y., Judd, K.L., 2012a. Dynamic programming with shape-

preserving rational spline Hermite interpolation. Working pa-

per.

[5] Cai, Y., Judd, K.L., 2012b. Shape-preserving dynamic program-

ming. Working paper.

[6] Gill, P., Murray, W., Saunders, M., 2005. SNOPT: An SQP al-

gorithm for largescale constrained optimization. SIAM Review,

47(1), 99–131.

[7] Judd, K., 1998. Numerical Methods in Economics. The MIT

Press.

[8] McCarl, B., et al., 2011. McCarl GAMS User Guide. GAMS

Development Corporation.

23



[9] Rust, J., 2008. Dynamic Programming. In: Durlauf, S.N.,

Blume L.E. (Eds.), New Palgrave Dictionary of Economics. Pal-

grave Macmillan, second edition.

[10] Schumaker, L., 1983. On Shape-Preserving Quadratic Spline In-

terpolation. SIAM Journal of Numerical Analysis, 20, 854–864.

24





RDCEP

Computation Institute

University of Chicago 

5735 S. Ellis Ave.

Chicago, IL, 60637 USA

+1 (773) 834 1726


For more information please 
contact us at 
info-RDCEP@ci.uchicago.edu  
or visit our website: 
www.rdcep.org


About RDCEP



The Center brings together experts in 
economics, physical sciences, energy 
technologies, law, computational 
mathematics, statistics, and computer 
science to undertake a series of tightly 
connected research programs aimed at 
improving the computational models needed 
to evaluate climate and energy policies, and 
to make robust decisions based on 
outcomes.






RDCEP is funded by a grant from the National Science Foundation (NSF) through the Decision Making 
Under Uncertainty (DMUU) program.



