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Abstract

This paper introduces a dynamic stochastic integrated model of
climate and economy (DSICE), and a numerical dynamic programming
algorithm for its solution. More specifically, we solve an example with
annual time periods, a six hundred year horizon, and shocks to the
economic and climate system. Our dynamic programming methods
solve such models on a laptop in about an hour, and do so with good
accuracy. This decisively refutes the pessimism one often hears about
the possibility of solving such models.
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1 Introduction

There is great uncertainty about the future of the climate and the impact of
economic activity on the climate. There is always great uncertainty about
future economic conditions. Therefore, any analysis of how society should
respond to possible climate change must consider the uncertainties any deci-
sion maker faces when choosing policies. This paper demonstrates that there
is no difficulty in adding uncertainty and risk to basic IAM models.

We use Nordhaus’ DICE2007 model as a starting point for our model. It
is well-known in the IAM community and widely used in the IAM literature.
Furthermore, it is well-documented. We extend it by adding both economic
and climate shocks to the framework of DICE2007.

The IAM community, despite numerous attempts, has so far not been
able to produce a stochastic IAM flexible enough to represent uncertainty in
a quantitatively realistic manner. In particular, the representation of time
should be compatible with the natural frequencies of both the natural and
social processes related to climate change. Models that assume long time
periods, such as ten years, represent neither social nor physical processes
because nontrivial dynamics and feedbacks may occur in either system during
a single decade.

Dynamic stochastic general equilibrium (DSGE) models in economics
use relatively short time periods, always at most a year. DICE2007 instead
uses a ten-year time period. Ten year time periods are too long for serious,
quantitative analysis of policy questions. For example, if one wants to know
how carbon prices should react to business cycle shocks, the time period
needs to be at most a year. No one would accept a policy that takes ten
years to respond to current shocks to economic conditions. Therefore, we
first develop DICE-CJL, an extension of DICE2007 that can handle any
time period length. We demonstrate that many substantive results depend
critically on the time step, strongly supporting our contention that short
time periods are necessary for quantitatively reliable analysis.

We then take the DICE-CJL and add economic and climate shocks. We
solve it using dynamic programming (DP) methods. In particular, we use
the methods presented in Judd (1998), Cai (2009), and Cai and Judd (2010,
2012a, 2012b, 2012c).

There are many different types of uncertainty that are discussed in the
IAM literature. First, many people examine parametric uncertainty, because
we do not know with precision the value of key parameters. Second, economic
models have substantial amounts of intrinsic uncertainty, meaning that even
if one knew the parameter, there would still be uncertainty due to random
exogenous events.

DSICE is a model that focuses on intrinsic uncertainty, as is done in the
DSGE literature in economics. However, the speed of our DSICE solution
algorithm is fast enough that we could also do wide-ranging parameter sweeps
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to address parameter uncertainty.
We demonstrate the performance of DSICE in a few examples. Those ex-

amples show that our algorithm is fast (about an hour on a single-processor
laptop to solve a one-year, 600-period stochastic model with eight state vari-
ables), and passes basic accuracy tests.

The results show decisively that climate change issues can be examined
with the same complexity used in standard dynamic stochastic models in
economics.

2 A Brief Summary of DICE2007

In DICE2007, Nordhaus (2008) uses a social welfare-maximizing problem to
model the tradeoffs between CO2 abatement, consumption, and investment.
He assumes ten-year time periods, and maximizes social utility subject to
economic and climate constraints. Nordhaus (2008) solves the problem

max
ct,µt

60∑

t=0

β10t10u(ct, lt)

s.t. kt+1 = (1− δ)10kt + 10 (Ωt(1− Λt)Yt − ct) ,

Mt+1 = Φ
M
Mt + (Et, 0, 0)

!,

Tt+1 = Φ
T
Tt + (ξ1Ft, 0)

!.

where t is the time in units of decades. At each time t, the social planner
has two control variables, annual consumption ct and emission control rate
µt. The annual utility function, u(c, l), is the power utility function,

u(c, l) =
(c/l)1−γ − 1

1− γ
l,

and β = 1.015−1 is the annual discount factor. DICE2007 assumes γ = 2.
The production side of DICE2007 is a basic optimal growth model. Out-

put in time t, denoted Yt, is produced from capital, kt (measured in trillions
of 2005 U.S. dollars), and labor supply

lt = 6514e−0.35t + 8600(1 − e−0.35t)

which equals world population in millions of people. World gross output per
year during decade t is

Yt = Atk
α
t l

1−α
t ,

where α = 0.3 is the capital share and At is total productivity factor which
is defined by

A0 = 0.02722,
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At+1 =
At

1− 0.092e−0.01t
.

The annual rate of depreciation of capital is δ = 0.1.
DICE2007 uses a simple box model of the climate. Total carbon emissions

(billions of metric tons) per decade is

Et = EInd
t + ELand

t ,

where ELand
t = 11× 0.9t represents emissions from biological processes and

EInd
t = σt(1− µt)Yt

is the rate of emissions from industrial activity. Industrial emissions are
affected by the technology, represented by σt, the ratio of industrial emissions
to output (metric tons of carbon per output in 2005 prices) if there is no
emission control. The technology factor σt follows the path

σ0 = 0.13418,

σt+1 =
σt

1 + 0.073e−0.03t
.

Abatement efforts reduce emissions by a factor µt, which reduces output by

Λt ≡ ψ1−θ2
t θ1,tµ

θ2
t ,

where θ2 = 2.8, ψt is the participation rate, and

θ1,t = 1.17σt/θ2 × (1 + e−0.05t)/2

is the adjusted cost for backstop. CO2 concentration is modeled by a three-
layer model, with

Mt = (MAT
t ,MUP

t ,MLO
t )"

representing carbon concentration (billions of metric tons) in the atmosphere
(Mt

AT), upper oceans (Mt
UP) and lower oceans (Mt

LO) . ΦM is the carbon
diffusion matrix (flows per decade),

Φ
M =




0.810712 0.097213 0
0.189288 0.852787 0.003119

0 0.05 0.996881



 .

The global mean temperature is represented by a two-layer model, with

Tt = (TAT
t , TLO

t )"

representing temperature (measured in degrees Celsius above the 1900 tem-
perature) of atmosphere (TAT

t ) and lower oceans (TLO
t ). ΦT is the climate

temperature diffusion matrix per decade,
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Φ
T =

[
1− ξ1

(η
3 − 0.3

)
0.3ξ1

0.05 0.95

]
,

where η = 3.8 and ξ1 = 0.22 is the climate-equation coefficient for the upper
level.

Temperature affects output. The damage function in DICE2007 is

Ωt ≡
1

1 + π1TAT
t + π2(TAT

t )2

with π1 = 0 and π2 = 0.0028388. The total radiative forcing (watts per
square meter from 1900) is

Ft = η log2
(
MAT

t /MAT
0

)
+ FEX

t ,

where FEX
t is a sequence of deterministic exogenous radiative forcing.

3 DICE-CJL

In all versions of DICE, the time interval of one period is 10 years, i.e., gov-
ernments could only have one chance per decade to adjust their economic and
climate policy. Moreover, a 10-year time difference is too large in the finite
difference method for discretizing the continuous time differential system.

We modify it into a general model with any smaller time interval h by
adjusting the parameters accordingly. In the following, t is the time in units
of h years, where the time interval h could be smaller than 1. The carbon
cycle transition matrix (flows per period) becomes

Φ
M
h =




1− 0.0189288h 0.0097213h 0
0.0189288h 1− 0.0147213h 0.0003119h

0 0.005h 1− 0.0003119h



 ,

the ratio of uncontrolled industrial emissions to output per period is

σt+1,h =
σt,h

1 + 0.0073e−0.003thh
,

and the total carbon emissions (billions of metric tons) from land per period
is

ELand
t,h = 1.1h × (1− 0.01h)t.

The climate temperature transfer matrix per period becomes

Φ
T
h =

[
1− ξ1,h

(η
3 − 0.3

)
0.3ξ1,h

0.005h 1− 0.005h

]
,
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where ξ1,h = 0.022h. The population and labor input in millions of people
at time t is

lt,h = 6514e−0.035th + 8600(1 − e−0.035th).

World gross output per year at time t is

Yt,h = At,hk
α
t,hl

1−α
t,h ,

where

At+1,h =
At,h

1− 0.0092e−0.001thh
.

The abatement-cost function is

Λt,h ≡ ψ1−θ2
t,h θ1,t,hµ

θ2
t,h

where

θ1,t,h = 1.17σt,h/θ2 × (1 + e−0.005th)/2.

This model with a flexible time interval is called DICE-CJL (Cai, Judd
and Lontzek).

In order to simplify the notations, in the following we will always assume
that h is the time interval of one period and we will cancel h in the subscript
of the above notations.

4 Terminal Value Function in DICE-CJL

A finite horizon with 60 periods (each period has 10 years) approximates
the infinite horizon problem in DICE2007, and it assumes that the terminal
value function is 0 everywhere. This is not a reasonable assumption, as this
implies that people will consume the entire capital stock before the terminal
time and do not control carbon emission or temperature at the last period. In
order to avoid this, DICE2007 imposes an additional constraint on terminal
capital by assuming that investment at the terminal time must be at least
2% of the capital stock at the terminal time.

In DICE-CJL, we cancel the additional constraint and use a more mean-
ingful terminal value function instead. We assume that at the terminal time
(the 600th year), the capital is k600, the three-layer CO2 concentration is
M600, the two-layer global mean temperature is T600, the abatement cost
factor of emissions reduction is Λ600, and the world gross output per year
is Y600. We assume that h = 1 for the dynamic system after the terminal
time. DICE-CJL assumes that at the terminal time, the world reaches a
partial equilibrium: after the terminal time, capital, population, world gross
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output per year and the abatement cost factor of emissions reduction will
be the same, emission control rate will always be 1, and emission of carbon
will always be 0 so that total amount of carbon will stay the same. That
is, for any year t after the terminal time, kt = k600, lt = 8600, Yt = Y600,
Λt = Λ600, µt = 1, and Et = 0. Thus, for any year t after the terminal time,
the dynamics of the climate system becomes

Mt+1 = Φ
M
Mt,

Tt+1 = Φ
T
Tt + (ξ1Ft+1, 0)

!,

where
Ft = η log2

(
MAT

t /MAT
0

)
+ 0.3.

To keep the above partial equilibrium, the consumption will be

ct = Ωt(1− Λt)Yt − δkt,

where

Ωt ≡
1

1 +
(
π1TAT

t + π2
(
TAT
t

)2)
ITAT

t >0

where ITAT
t >0 is the indicator function (1 if TAT

t > 0, and 0 elsewhere), for
the years after terminal time.

Therefore, we have our terminal value function:

V (k600,M600,T600) =
∞∑

t=601

βt−601u(ct, lt).

To compute the terminal value function, we will use the summation of dis-
counted utilities over 800 years from t = 601 to t = 1400 with one year as the
time interval for each period instead. It will be a very good approximation
of the summation of the infinite sequence, because β800 = 6.7×10−6 is small
enough. That is,

V (k600,M600,T600) =
1400∑

t=601

βt−601u(ct, lt).

It would be too time-consuming to use the terminal value function of
the above formula in optimizers to compute optimal solutions, so we will
use its approximation to save computational time. In our examples, we will
use complete Chebyshev polynomials over the 6-dimensional state space,
where we let k600 ∈ [40000, 160000], MAT

600 ∈ [720, 1350], MUP
600 ∈ [1280, 2400],

MLO
600 ∈ [16000, 30000], TAT

600 ∈ [1, 3], and TLO
600 ∈ [1.5, 3.5].
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5 DICE-CJL Numerical Results

Numerically, if h is too large, then the numerical errors may become so large
that the solutions may be not trusted. We use various time intervals to see
the difference of solutions of DICE-CJL with these different h.

5.1 Solving DICE-CJL with a Reliable Optimizer

We use CONOPT in the GAMS environment (McCarl, 2011) to solve DICE-
CJL with different time period lengths in our GAMS code. The terminal
value function is approximated by the degree-4 complete Chebyshev poly-
nomial. When the time interval is smaller, it becomes more challenging. In
DICE-CJL, if h = 10 years, neither the number of variables nor the number
of constraints is larger than 1000 in our GAMS code, but if h = 0.25 year,
both the number of variables and the number of constraints are larger than
20000.

We will solve this large-scale problem using a good initial guess. The good
initial guess is the linear interpolation of optimal solutions of DICE-CJL with
a larger time interval. For example, we will use the linear interpolation of
optimal solutions of the 2-year DICE-CJL as the initial guess for the annual
DICE-CJL model.

Figure 1 plots the optimal capital paths over the first 200 years of DICE-
CJL with various time intervals h = 10, 8, 4, 2, 1, 0.5, and 0.25 years. We see
that DICE-CJL with a smaller h has a smaller capital stock, because more
money is spent in CO2 emission control (particularly in the early years), see
Figure 4 for the optimal emission control rate. Therefore, DICE-CJL with a
smaller h has a smaller amount of carbon concentration in the atmosphere
(Figure 2), and also a lower global mean surface temperature (Figure 3).
Figure 2 tells us that carbon concentration in the atmosphere will reach its
peak after around 200 years, and then drop slowly over the latter 400 years
on the optimal paths. And Figure 3 shows that surface temperature will
reach its peak after around 230 years, and then drop slowly. Moreover, after
around 230 years, emission control rate will always be 1 so that CO2 emission
from industry is 0.

The running time for each DICE-CJL with h ≥ 0.25 years is less than
1 minute in the GAMS environment on a Mac with a processor of 2.8 GHz
Intel Core 2 Duo and 8GB memory.

5.2 Richardson Extrapolation

The true model is a continuous-time model. We hope that the solutions
converge to the continuous-time solution as we reduce the time period. Also,
our optimizer may not give a good optimal solution with a very small time
step. In fact, if we choose one month as the time interval of each period over
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Figure 1: Capital in DICE-CJL with Various Time Intervals
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Figure 2: Carbon Concentration in the Atmosphere in DICE-CJL with Var-
ious Time Intervals
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Figure 3: Surface Temperature in DICE-CJL with Various Time Intervals
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Figure 4: Emission Control Rate in DICE-CJL with Various Time Intervals
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Figure 5: Richardson Extrapolation for Capital
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600 years, CONOPT fails to find an optimal solution. For both reasons, we
want to check if our discrete time solutions converge to a common limit.

Richardson extrapolation (Richardson and Gaunt, 1927) is a standard
way to check if our solutions are consistent with convergence. We applied
Richardson extrapolation to our solutions and found that they are consistent
with convergence. The next figures show that our solutions are good. The
vertical axis in each figure is

log10

(∣∣∣∣∣
x∗t,h − xRt

xRt

∣∣∣∣∣
+ 10−6

)

,

where x∗t,h is the optimal solution at year t of DICE-CJL with h as the

time interval for h = 1, 0.5, or 0.25 year, xRt is the 3-point Richardson
extrapolation of x∗t,1, x

∗
t,0.5, and x∗t,0.25, i.e.

xRt =
1

3

(
8x∗t,0.25 − 6x∗t,0.5 + x∗t,1

)
.

Each line represents the difference between the solution for a time step and
the Richardson extrapolant. We see that each variable at each time is moving
uniformly towards the extrapolant as we reduce the time step.
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Figure 6: Richardson Extrapolation for Carbon in Atmosphere
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Figure 7: Richardson Extrapolation for Temperature in Atmosphere
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Figure 8: Richardson Extrapolation for Emission Control Rate
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6 DSICE

Now that we have a solid understanding of the deterministic model, we are
ready to extend it to include stochastic elements. We add two stochastic
shocks to DICE-CJL, one representing an economic shock and the other
representing a climate event that occurs at some random time. The resulting
optimization problem is

max
ct,µt

E

{
∞∑

t=0

βthu(ct, lt)h

}

s.t. kt+1 = (1− δ)hkt + (Ωt(1− Λt)Yt − ct) h,

Mt+1 = Φ
M
Mt + (Et, 0, 0)

",

Tt+1 = Φ
T
Tt + (ξ1Ft, 0)

",

ζt+1 = gζ(ζt,ω
ζ
t ),

Jt+1 = gJ(Jt,ω
J
t )

where E {·} is the expectation operator,

Yt ≡ ζtAtk
α
t l

1−α
t
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ζt is a stochastic productivity shock corresponding to economic fluctuations,
and

Ωt ≡
Jt

1 + π1TAT
t + π2(TAT

t )2

is a new component of the damage function with a stochastic shock Jt,
where ωζ

t and ωJ
t are two independent random variables, and gζ and gJ are

transition functions of ζt and Jt, respectively.
The novel element is the shock Jt. It is a jump process that initially

equals 1 but then may fall at some future time with the hazard rate of
decline related to the contemporaneous temperature. See Lontzek, Cai, and
Judd (2012) for a more complete discussion of the details.

The DP model for DSICE is

Vt(k,M,T, ζ, J) = max
c,µ

u(c, lt)h+ βE{Vt+1(k
+,M+,T+, ζ+, J+)}

s.t. k+ = (1− δ)hk + (Ωt(1− Λt)f(k, lt, ζ, t)− c)h,

M
+ = Φ

M
M+ (Et, 0, 0)

!,

T
+ = Φ

T
T+ (ξ1Ft, 0)

!,

ζ+ = gζ(ζ,ωζ),

J+ = gJ (J,ωJ),

where Vt is value function at stage t, consumption c and emission control
rate µ are two control variables, (k,M,T, ζ, J) is 8-dimensional state vector
at stage t (where M = (MAT,MUP,MLO)! is the three-layer CO2 concen-
tration and T = (TAT, TLO)! is the two-layer global mean temperature),
and (k+,M+,T+, ζ+, J+) is its next-stage state vector.

7 Numerical Methods for DP

Before discussing examples of DSICE, we summarize the numerical meth-
ods we used to solve the dynamic programming problem. In DP problems, if
state variables and control variables are continuous such that value functions
are also continuous, then we have to use some approximation for the value
functions, since computers cannot model the entire space of continuous func-
tions. We focus on using a finitely parameterizable collection of functions to
approximate value functions, V (x, θ) ≈ V̂ (x, θ;b), where x is the continuous
state vector (in DSICE, it is the 6-dimensional vector (k,M,T)), θ is the
discrete state vector (in DSICE, it is the 2-dimensional vector (ζ, J)), and b

is a vector of parameters. The functional form V̂ may be a linear combina-
tion of polynomials, or it may represent a rational function or neural network
representation, or it may be some other parameterization specially designed
for the problem. After the functional form is fixed, we focus on finding the
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vector of parameters, b, such that V̂ (x, θ;b) approximately satisfies the Bell-
man equation (Bellman, 1957). Numerical DP with value function iteration
can solve the Bellman equation approximately (Judd, 1998).

A general DP model is based on the Bellman equation:

Vt(x, θ) = max
a∈D(x,θ,t)

ut(x, a) + βE
{
Vt+1(x

+, θ+) | θ
}
,

s.t. x+ = f(x, θ, a),

θ+ = g(θ,ω),

where Vt(x, θ) is called the value function at time t ≤ T (the terminal value
function VT (x, θ) is given), (x+, θ+) is the next-stage state, D(x, θ, t) is a
feasible set of a, ω is a random variable, and ut(x, a) is the utility function at
time t. The following is the algorithm of parametric DP with value function
iteration for finite horizon problems.

Algorithm 1. Numerical Dynamic Programming with Value Function Iter-

ation for Finite Horizon Problems

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ mt}
for every t < T , and choose a functional form for V̂ (x, θ;b), where

θ ∈ Θ. Let V̂ (x, θ;bT ) ≡ VT (x, θ). Then for t = T − 1, T − 2, . . . , 0,
iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi,j = max
ai,j∈D(xi,θj ,t)

ut(xi, aij) + βE
{
V̂ (x+i,j , θ

+
j ;bt+1) | θj

}

s.t. x+i,j = f(xi, θj, ai,j),

θ+j = g(θj ,ω),

for each θj ∈ Θ, xi ∈ Xt, 1 ≤ i ≤ mt.

Step 2. Fitting step. Using an appropriate approximation method, compute

the bt such that V̂ (x, θj ;bt) approximates (xi, vi,j) data for each θj ∈
Θ.

There are three main components in numerical DP: optimization, approxi-
mation, and numerical integration. In the following we focus on discussing
approximation and omit the introduction of optimization and numerical in-
tegration. Detailed discussion of numerical DP can be found in Cai (2009),
Judd (1998) and Rust (2008).

8 Approximation

An approximation scheme consists of two parts: basis functions and approx-
imation nodes. Approximation nodes can be chosen as uniformly spaced
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nodes, Chebyshev nodes, or some other specified nodes. From the view-
point of basis functions, approximation methods can be classified as either
spectral methods or finite element methods. A spectral method uses globally
nonzero basis functions φj(x) such that V̂ (x; c) =

∑n
j=0 cjφj(x) is a degree-n

approximation. Examples of spectral methods include ordinary polynomial
approximation, ordinary Chebyshev polynomial approximation, and shape-
preserving Chebyshev polynomial approximation (Cai and Judd, 2012c). In
contrast, a finite element method uses local basis functions φj(x) that are
nonzero over sub-domains of the approximation domain. Examples of finite
element methods include piecewise linear interpolation, shape-preserving ra-
tional function spline interpolation (Cai and Judd, 2012b), cubic splines, and
B-splines. See Cai (2009), Cai and Judd (2010), and Judd (1998) for more
details.

8.1 Chebyshev Polynomial Approximation

Chebyshev polynomials on [−1, 1] are defined as Tj(z) = cos(j cos−1(z)),
while general Chebyshev polynomials on [a, b] are defined as Tj((2x − a −
b)/(b − a)) for j = 0, 1, 2, . . .. These polynomials are orthogonal under the

weighted inner product: 〈f, g〉 =
´ b
a f(x)g(x)w(x)dx with the weighting func-

tion w(x) =
(
1− ((2x− a− b)/(b− a))2

)−1/2
. A degree n Chebyshev poly-

nomial approximation for V (x) on [a, b] is

V̂ (x; c) =
1

2
c0 +

n∑

j=1

cjTj

(
2x− a− b

b− a

)
, (1)

where cj are the Chebyshev coefficients.
If we choose the Chebyshev nodes on [a, b]: xi = (zi+1)(b−a)/2+a with

zi = − cos ((2i− 1)π/(2m)) for i = 1, . . . ,m, and Lagrange data {(xi, vi) :
i = 1, . . . ,m} are given (where vi = V (xi)), then the coefficients cj in (1)
can be easily computed by the following formula,

cj =
2

m

m∑

i=1

viTj(zi), j = 0, . . . , n. (2)

The method is called the Chebyshev regression algorithm in Judd (1998).
It is often more stable to use the expanded Chebyshev polynomial in-

terpolation (Cai and Judd, 2012a), as the above standard Chebyshev poly-
nomial interpolation gives poor approximation in the neighborhood of end
points. That is, we use the following formula to approximate V (x),

V̂ (x; c) =
1

2
c0 +

n∑

j=1

cjTj

(
2x− ã− b̃

b̃− ã

)

, (3)
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where ã = a− δ and b̃ = b+ δ with δ = (z1+1)(a− b)/(2z1). Moreover, if we
choose the expanded Chebyshev nodes on [a, b]: xi = (zi+1)(̃b−ã)/2+ã, then
the coefficients cj can also be calculated easily by the expanded Chebyshev
regression algorithm (Cai, 2009), which is similar to (2).

8.2 Multidimensional Complete Chebyshev Approximation

In a d-dimensional approximation problem, let the domain of the approxi-
mation function be

{x = (x1, . . . , xd) : ai ≤ xi ≤ bi, i = 1, . . . d} ,

for some real numbers ai and bi with bi > ai for i = 1, . . . , d. Let a =
(a1, . . . , ad) and b = (b1, . . . , bd). Then we denote [a, b] as the domain. Let
α = (α1, . . . ,αd) be a vector of nonnegative integers. Let Tα(z) denote the
product Tα1

(z1) · · · Tαd
(zd) for z = (z1, . . . , zd) ∈ [−1, 1]d. Let

Z(x) =

(
2x1 − a1 − b1

b1 − a1
, . . . ,

2xd − ad − bd
bd − ad

)

for any x = (x1, . . . , xd) ∈ [a, b].
Using these notations, the degree-n complete Chebyshev approximation

for V (x) is

V̂n(x; c) =
∑

0≤|α|≤n

cαTα (Z(x)) ,

where |α| =
∑d

i=1 αi for the nonnegative integer vector α = (α1, . . . ,αd). So

the number of terms with 0 ≤ |α| =
∑d

i=1 αi ≤ n is
(n+d

d

)
for the degree-n

complete Chebyshev approximation in Rd.
Let

z(k) =
(
z(k1)1 , . . . , z(kd)d

)
∈ [−1, 1]d,

where k = (k1, . . . , kd), z(ki)i = − cos ((2ki − 1)π/(2m)) for ki = 1, . . . ,m,
and i = 1, . . . , d. Let

x(ki)i = (z(ki)i + 1)(bi − ai)/2 + ai,

for i = 1, . . . , d, and then

x(k) =
(
x(k1)1 , . . . , x(kd)d

)

is a d-dimensional Chebyshev node in [a, b]. These x(k) (for all ki = 1, . . . ,m
and i = 1, . . . , d) forms the set of the d-dimensional Chebyshev nodes with
m nodes in each dimension. For each x(k), let v(k) = V (x(k)) be computed by
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solving the Bellman equation at x(k). Then the coefficients of the degree-n
complete Chebyshev approximation on [a, b] are computed as

cα =
2d̃

md

∑

1≤ki≤m,1≤i≤d

v(k)Tα(z
(k)),

where d̃ =
∑d

i=1 1αi>0 with 1αi>0 as the indicator

1αi>0 =

{
1, if αi > 0,

0, if αi = 0,

for all nonnegative integer vectors α with 0 ≤ |α| ≤ n.
We can easily extend this multidimensional complete Chebyshev approx-

imation and the formula to compute the Chebyshev coefficients to its ex-
panded version over [a, b].

9 Choosing Domains of Value Functions

In our examples, (k,M,T) is the 6-dimensional vector of continuous states,
and (ζ, J) is 2-dimensional vector of discrete states. All of our examples
assume that we solve a 600-year horizon problem. As is assumed in DICE, we
believe that this solution of the first few centuries are a good approximation
of the solution of the first few centuries to the infinite horizon problem in
the model description.

It is important to set an appropriate domain for approximating the value
functions. We use the solution of DICE-CJL to tell us how to construct
the domain of the value function at each time. Over these 600 years, the
optimal solution of the annual DICE-CJL tells us that the minimal capital
is 137, and the maximal capital is 75535 along the optimal path of capital.
Therefore, if we use a fixed domain along the time path, then the domain
will be too large. The problem becomes more difficult when we include the
stochastic states, particularly the tipping point shock, in DSICE.

To overcome this difficult problem, we let the domains vary along the time
path. We use the optimal solution of DICE-CJL to generate the domains
of the value functions along time t, and keep the optimal state variables of
DICE-CJL at around the center of the domain. When there is a tipping
point shock in the model, the optimal state variables of the adjusted DICE-
CJL should also be around the center of the domain, where the adjusted
DICE-CJL assume that the tipping point happens at the first year.

To choose the domains with the above properties, we set the range of
capital kt along time t to be

[
0.8min

i,j

{
ζik

∗
t,Jj

}
, 1.5max

i,j

{
ζik

∗
t,Jj

}]
,
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where ζi and Jj are possible values of ζ and J respectively, k∗t,Jj is the optimal
capital at time t of the adjusted DICE-CJL with the damage function

Ωt ≡
Jj

1 + π1TAT
t + π2(TAT

t )2
.

The ranges of the other continuous states are defined in the following way:

Mt+1 = Φ
M
Mt + (Et, 0, 0)

",

Mt+1 = Φ
M
Mt + (Et, 0, 0)

",

Tt+1 = Φ
T
Tt + (ξ1F t, 0)

",

Tt+1 = Φ
T
Tt + (ξ1F t, 0)

",

where Mt and Tt are the lower bounds of Mt and Tt respectively, Mt and
Tt are the upper bounds of Mt and Tt respectively,

F t = η log2
(
MAT

t /MAT
0

)
+ FEX

t ,

F t = η log2

(
M

AT
t /MAT

0

)
+ FEX

t ,

and Et and Et are the lower and the upper bounds of the optimal emission
at time t.

10 Accuracy Test

An accuracy test is very important for any numerical algorithm. A numer-
ical algorithm should not be trusted if we have not examined its accuracy.
Here again our DICE-CJL model helps us. Since we can solve DICE-CJL by
our GAMS code directly without using numerical DP algorithms, it will be a
natural way to compare the solutions given by the numerical DP algorithm
and the solutions given by the GAMS code using a large-scale nonlinear op-
timizer for DICE-CJL , because DICE-CJL are degenerated cases of DSICE.

Our Fortran code of numerical DP algorithm (the deterministic version
of Algorithm 1) is applied to solve DICE-CJL. In the maximization step
of DP, we use NPSOL (Gill et al., 1994), a set of Fortran subroutines for
minimizing a smooth function subject to linear and nonlinear constraints.
For each dimension of the continuous state space, we choose 5 expanded
Chebyshev nodes, and then use the tensor rule to generate all points. In
our examples, the number of points is 56 = 15625. Therefore, for each value
function iteration, we compute 15625 values of the value function at these
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points, and then compute Chebyshev coefficients of a degree-4 expanded
complete Chebyshev polynomial to approximate the value function.

After computing the Chebyshev coefficients for all stages along the 600
years using the backward value function iteration method, we generate the
optimal path with the given initial state in the GAMS code by the forward
iteration method. That is, given the current stage’s state, since we have
the approximation of the next-stage value function, we can use the Bellman
equation to compute the optimal consumption and emission control so that
we can get the optimal next-stage state, and then go on until the terminal
stage.

Then we use the solution of DICE-CJL from our GAMS code to verify the
accuracy of the optimal path computed from the numerical DP algorithm.
Table 1 lists the relative errors of the optimal paths over the first 400 years.
The errors are computed in the following formula:

max
th≤400

∣∣∣∣∣
x∗t,DP − x∗t,GAMS

x∗t,GAMS

∣∣∣∣∣
,

where x∗t,DP is the optimal path at stage t from our numerical DP algorithm,
and x∗t,GAMS is the optimal solution at stage t of our GAMS code for DICE-
CJL with time interval h.

Table 1: Relative Errors of Optimal Paths from Numerical DP Algorithm

h k MAT TAT c µ

10 years 9.1(−4) 9.7(−5) 1.0(−4) 1.6(−4) 1.7(−4)
8 years 9.9(−4) 9.3(−5) 9.7(−5) 1.8(−4) 2.1(−4)
4 years 1.1(−3) 1.1(−4) 1.2(−4) 2.5(−4) 1.5(−4)
2 years 1.3(−3) 1.2(−4) 1.4(−4) 4.6(−4) 1.9(−4)
1 year 1.4(−3) 1.3(−4) 1.5(−4) 3.8(−4) 8.6(−4)

0.5 year 1.4(−3) 1.4(−4) 1.6(−4) 4.1(−4) 1.8(−4)
0.25 year 1.5(−3) 1.4(−4) 1.6(−4) 4.2(−4) 3.3(−4)

Note: a(−n) means a× 10−n.

Moreover, the relative errors of the other states including MUP, MLO

and TLO, are also small, varying from O(10−4) to O(10−6).
Table 2 lists the computational time of our numerical DP algorithm for

DICE-CJL with various time intervals. They are run on a Mac with a pro-
cessor of 2.8 GHz Intel Core 2 Duo and 8GB memory.

Table 2: Computational Time of Numerical DP Algorithm

20



degree of polynomial time interval h computational time

4 10 years 1.9 minutes
6 10 years 38 minutes
4 8 years 2.4 minutes
4 4 years 4.5 minutes
4 2 years 7.8 minutes
4 1 year 15.4 minutes
4 0.5 year 32 minutes
4 0.25 year 59.7 minutes

The main reason that the computational time of numerical DP with the
degree-6 complete Chebyshev polynomial is much more than the computa-
tional time of numerical DP with the degree-4 one is that we need to compute
values at 76 = 117649 points for degree-6 complete Chebyshev polynomial
approximation instead of 56 = 15625 points for the degree-4 one. The second
reason is that the degree-6 complete polynomial has

(6+6
6

)
= 924 terms, while

the degree-4 complete polynomial has only
(4+6

6

)
= 210 terms, so that in the

objective function of the maximization step of Algorithm 1, the computa-
tional time of next-stage value function approximation in degree-6 complete
polynomial takes about 4 times more time than the degree-4 one.

The numerical DP algorithm with the degree-6 complete polynomial is
much more time-consuming than the one with the degree-4 one to solve
DICE-CJL. Furthermore, the degree-4 one has enough accuracy. Therefore,
we will keep using the degree-4 complete Chebyshev polynomial approxima-
tion in the numerical DP algorithm in the later stochastic examples.

11 DSICE Results

In this section we apply numerical DP algorithms in our Fortran code to
solve DSICE. For each discrete state value, we chose the degree-4 expanded
complete Chebyshev polynomials to approximate the value functions. More-
over, we computed the values of the value function on the multidimensional
tensor grids with 5 expanded Chebyshev nodes on each dimension in the
continuous state ranges, and then compute the Chebyshev coefficients.

After computing these Chebyshev coefficients on all discrete state values
for all stages along the 600 years using the backward value function iteration
method, we use a simulation method to generate the optimal paths by the
forward iteration method. That is, when the state at the current stage is
given, since the next stage value function approximation has been computed
by previous numerical DP algorithm, we can apply the optimization solver to
get the optimal policy and the next-stage continuous state (k,M,T). Then
we simulate to get the next stage stochastic state. We start this process with
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the given initial continuous state in the GAMS code and (ζ0, J0) = (1, 1),
and run it until the terminal time.

In the following examples, we will compute 1000 optimal paths by simu-
lation method, and then plot their distribution.

11.1 DSICE with an Economic Shock

In this example, we consider economic shock ζt in the model. Let ζt be a
discrete Markov chain with 3 possible values of 0.96, 1.0, 1.04, and its prob-
ability transition matrix is




0.5 0.5 0

0.125 0.75 0.125
0 0.5 0.5



 ,

where its (i, j) element is the annual transition probability of ζt from state
i to j.

The following figures show the numerical results of DSICE with a quarter
of one year as the time interval of each period over 600 years. It takes about
3.1 hours to run the numerical DP algorithm on a Mac with a processor of
2.8 GHz Intel Core 2 Duo and 8GB memory.

Figure 9 shows the distribution of optimal paths of capital over the first
200 years. The solid line is the average optimal capital along time t, the
dotted lines are the minimal or maximal optimal capital, the dashed line is
the median optimal capital, the dash-dot lines are the 25% or 75% quantile
of the 1000 optimal paths. Figures 10, 11 and 12 plot the distribution of
optimal paths of carbon concentration in atmosphere, surface temperature
and emission control rate respectively.

We see that the economic shock has significant impact on the capital
stock and the emission control rate, but little impact on carbon concen-
tration and temperature. This happens because the economic shock is not
irreversible, in this example. No matter which state ζt is now, after about 10
years, it has about 1/6 probability to be in state 1, about 2/3 probability to
be in state 2, and about 1/6 probability to be in state 3. Moreover, when we
have more money from the economic shock with ζt > 1, we will spend more
money to reduce CO2 emission, and when we have less money with ζt < 1,
we will spend less money in reducing CO2 emission.
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Figure 9: Capital in Quarterly Version of DSICE with Economic Shock
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Figure 10: Carbon in Atmosphere in Quarterly Version of DSICE with Eco-
nomic Shock
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Figure 11: Temperature in Atmosphere in Quarterly Version of DSICE with
Economic Shock
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Figure 12: Emission Control Rate in Quarterly Version of DSICE with Eco-
nomic Shock
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11.2 DSICE with a Tipping Point

In this example, we consider a tipping point shock Jt in DSICE. Let Jt be a
discrete Markov chain with 2 possible values of 1.0, 0.9, and its probability
transition matrix at time t is

[
1− p1,2 p1,2

0 1

]
,

where its (i, j) element is the transition probability from state i to j for Jt,
and

p1,2 = max

{
0,min

{
1,

h(TAT
t − 1)

100

}}
.

So the probability p1,2 is dependent on the surface temperature at time t,
higher surface temperature implies higher probability to have an irreversible
damage, as the transition probability of Jt from state 2 to 1 is 0. See Lontzek,
Cai and Judd (2012) for more detailed discussion about DSICE with tipping
points.

The following figures show numerical results of DSICE with one year as
the time interval of each period over 600 years. It takes about half an hour
to run the numerical DP algorithm on a Mac with a processor of 2.8 GHz
Intel Core 2 Duo and 8GB memory.

Figure 13 shows the distribution of optimal paths of capital over the first
200 years. The solid line is the average optimal capital along time t, the
dotted lines are the minimal or maximal optimal capital, the dashed line is
the median optimal capital, the dash-dot lines are the 25% or 75% quantile
of the 1000 optimal paths. Figures 14, 15 and 16 plot the distribution of
optimal paths of carbon concentration in atmosphere, surface temperature
and emission control rate respectively.

From these figures, we see that among these 1000 optimal paths, the
tipping point has significant impact on all of these state variables and con-
trol variables. Once the tipping event happens, carbon concentration and
temperature increase dramatically, and emission control rate has a big jump,
and capital will stop growing in the first years and then start growing at a
much smaller speed.
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Figure 13: Capital in Annual Version of DSICE with Tipping Point
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Figure 14: Carbon in Atmosphere in Annual Version of DSICE with Tipping
Point

2100 2200 2300 2400 2500 2600

800

900

1000

1100

1200

1300

1400

Year

Carbon in Atmosphere

 

 
Expected carbon in atmosphere
0% and 100% quantile
25% and 75% quantile
Median

26



Figure 15: Temperature in Atmosphere in Annual Version of DSICE with
Tipping Point
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Figure 16: Emission Control Rate in Annual Version of DSICE with Tipping
Point
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Figure 17: Capital in DSICE with Economic Shock and Tipping Point
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11.3 DSICE with Economic Shock and Tipping Point

Our last example considers the combination of economic shock and tipping
point shock in the above two examples. The following figures show numerical
results of DSICE with one year as the time interval of each period over 600
years. It takes about 1.5 hours to run the numerical DP algorithm on a Mac
with a processor of 2.8 GHz Intel Core 2 Duo and 8GB memory.

Figure 17 shows the distribution of optimal paths of capital over the first
200 years. The solid line is the average optimal capital along time t, the
dotted lines are the minimal or maximal optimal capital, the dashed line is
the median optimal capital, the dash-dot lines are the 25% or 75% quantile
of the 1000 optimal paths. Figure 18 plots the distribution of optimal paths
of emission control rate. The distribution of carbon concentration in the
atmosphere and the surface temperature are similar to the previous example
of DSICE with an tipping point.

From the figures, we see that a tipping point has a significant impact
on the state variables and control variables, and the economic shock also
impacts significantly capital and emission control rate. Particularly for the
emission control rate (Figure 18), we see that the dotted line with maximal
emission control rate is not at the same path with the dash-dot or dashed
lines before the tipping event happens, but they are the same in the previous
example. This difference is caused by the impact of economic shock.
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Figure 18: Emission Control Rate in DSICE with Economic Shock and Tip-
ping Point
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12 Conclusion

We have described DSICE, a basic dynamic stochastic extension of DICE2007.
We have shown that it is quite feasible to combine annual (even sub-annual)
time periods with economic and climate uncertainty. The speed of the al-
gorithms means that we can do extensive exploration of parameter space
to determine sensitivity of conclusions to parameters about which we have
limited information. The accuracy tests indicate that the algorithms are re-
liable as well as fast. This paper has focused on describing the basic model
and addressing basic issues relating to the feasibility of such a model. We
have clearly refuted the pessimism one often hears about the possibility of
such analyses.
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