
Economics Letters 117 (2012) 161–164
Contents lists available at SciVerse ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

Dynamic programming with shape-preserving rational spline
Hermite interpolation
Yongyang Cai ∗, Kenneth L. Judd
Hoover Institution, 424 Galvez Mall, Stanford University, Stanford CA 94305, United States

a r t i c l e i n f o

Article history:
Received 23 December 2011
Received in revised form
20 April 2012
Accepted 4 May 2012
Available online 14 May 2012

JEL classification:
C6
C61
C63

Keywords:
Numerical dynamic programming
Shape-preserving approximation
Hermite interpolation
Rational function spline
Value function iteration

a b s t r a c t

Numerical methods for dynamic programming often use value function iteration and interpolation. We
present a novel shape-preserving rational spline approximation method that improves value function
iteration in terms of both stability and accuracy compared to more common methods.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Conventional dynamic programming (DP) algorithms compute
a value function at a finite number of states, and then fit
some function to those points to create a new approximate
value function. Simple versions of this approach often have two
problems. First, Cai and Judd (forthcoming) shows that value
function iteration can be unstable if the approximation method
does not preserve the shape of the data. Second, even if the
iterations are stable, the quality of the approximationsmay be low.
For example, a good piecewise linear approximation of a smooth
value functionwill requiremany nodes. Cai and Judd (2012) shows
that smooth value function approximations using both level and
slope information will significantly improve the accuracy of value
function iteration.

This paper introduces a novel piecewise rational function
approximation that uses both level and slope data to produce C1

shape-preserving approximations. We use a multi-stage portfolio
optimization problem to show its advantages.

∗ Corresponding author. Tel.: +1 650 926 9786.
E-mail address: yycai@stanford.edu (Y. Cai).

0165-1765/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.econlet.2012.05.004
2. Numerical methods for dynamic programming

If state and control variables in a DP problem are continuous,
value function must be approximated in some tractable manner.
Value functions are typically approximated with a finitely param-
eterized collection of function; that is,weuse some functional form
V̂ (x; c), where c is a vector of parameters, and approximate a value
function, V (x), with V̂ (x; c) for some parameter vector c. For exam-
ple, V̂ could be a linear combination of polynomials where cwould
be the weights. After the functional form is fixed, we focus on find-
ing the vector of parameters, c, such that V̂ (x; c) approximately
satisfies the Bellman equation (Bellman, 1957).

Numerical solutions to a finite horizon DP are based on the
Bellman equation:

Vt(x) = max
a∈D(x,t)

ut(x, a) + βE{Vt+1(x+) | x, a},

s.t. x+
= g(x, a, zt),

where Vt(x) is the value function at time t ≤ T , and the terminal
value function VT (x) is given. x+ denotes the possibly random state
in the next period, where the transition depends on the current-
stage state x, the action a and a serially uncorrelated random
variable zt . Furthermore, E{· | x, a} is the conditional expectation
operator, D(x, t) is the set of feasible values for a in state x, and

http://dx.doi.org/10.1016/j.econlet.2012.05.004
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
mailto:yycai@stanford.edu
http://dx.doi.org/10.1016/j.econlet.2012.05.004


162 Y. Cai, K.L. Judd / Economics Letters 117 (2012) 161–164
ut(x, a) is the utility function at time t . The following outlines the
parametric DP method. (More detailed discussion of numerical DP
can be found in Cai (2009), Cai and Judd (2010), Judd (1998) and
Rust (2008).)

Algorithm 1. Numerical dynamic programming with value func-
tion iteration for finite horizon problems.

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤

mt} for every t < T , and choose a functional form for
V̂ (x; c). Let V̂ (x; cT ) ≡ VT (x). Then for t = T −1, T −

2, . . . , 0, iterate through steps 1 and 2.
Step 1. Maximization step. Compute

vi = max
ai∈D(xi,t)

ut(xi, ai) + βE{V̂ (x+

i ; ct+1)}

s.t. x+

i = g(xi, ai, zt),

xmin
t+1 ≤ x+

i ≤ xmax
t+1 ,

for each xi ∈ Xt , 1 ≤ i ≤ mt .
Step 2. Fitting step. Using an appropriate approximation

method, compute the ct such that V̂ (x; ct) approxi-
mates (xi, vi) data.

Note that we constrain x+

i to be in [xmin
t+1, x

max
t+1 ]. If this constraint

is not imposed, then we might be extrapolating V̂ outside of the
range being approximated, which can easily lead to numerical
instabilities. We choose these limits so that they seldom, if ever,
bind.

3. Dynamic programming with Hermite interpolation

The conventional DP algorithm uses the data set {(xi, vi):
i = 1, . . . ,m}, called the Lagrange data, to construct the value
function approximation V̂t(x). Cai and Judd (2012) introduces
DP algorithms with Hermite approximation using both level
and slope information, called Hermite data, in the fitting step.
Computing Hermite information is almost as cheap as computing
Lagrange data, but the extra information produces amore accurate
approximation. Here we describe their algorithm for readers’
convenience.

Algorithm 2. Numerical dynamic programming with value func-
tion iteration and Hermite approximation for finite horizon prob-
lems.

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤

mt} for every t < T , and choose a functional form for
V̂ (x; c). Let V̂ (x; cT ) ≡ VT (x). Then for t = T −1, T −

2, . . . , 0, iterate through steps 1 and 2.
Step 1. Maximization step. For each xi ∈ Xt , 1 ≤ i ≤ mt ,

compute

vi = max
ai∈D(yi,t),yi

ut(yi, ai) + βE{V̂ (x+

i ; ct+1)},

s.t. x+

i = g(yi, ai, zt),
xi − yi = 0,
xmin
t+1 ≤ x+

i ≤ xmax
t+1 ,

and

si = λ∗

i ,

where λ∗

i is the shadow price vector of the constraint
xi − yi = 0.

Step 2. Hermite fitting step. Using an appropriate approx-
imation method, compute the ct such that V̂ (x; ct)
approximates (xi, vi, si) data.
4. Shape-preserving rational function spline Hermite interpo-
lation

DP problems in economics problems often have increasing and
concave value functions, and many cost-minimization problems
in operations research have increasing and convex cost functions
(see Bertsekas, 2005, 2007). Cai and Judd (forthcoming) shows
that a shape-preserving polynomial approximation of the value
function will stabilize value function iteration. However, their
methods impose many additional shape-preserving constraints
in the fitting problem and are computationally more demanding
than desirable. There has been much effort developing shape-
preserving and Hermite interpolation; see, for example, the
survey paper in Goodman (2001). Most methods produce splines
and are global, with all spline parameters depending on all
the data. Judd and Solnick (1994) applied Schumaker shape-
preserving polynomial splines (Schumaker, 1983) in optimal
growth problems, but Schumaker splines are costly because
they require creating new nodes each time a value function is
constructed.

This paper presents an inexpensive shape-preserving rational
function spline Hermite interpolation for a concave,monotonically
increasing function. Given the Hermite data {(xi, vi, si) : i = 1,
. . . ,m}, we approximate the value function on the interval
[xi, xi+1] with

V̂ (x; c) = ci1 + ci2(x − xi) +
ci3ci4(x − xi)(x − xi+1)

ci3(x − xi) + ci4(x − xi+1)
,

for x ∈ [xi, xi+1], where

ci1 = vi,

ci2 =
vi+1 − vi

xi+1 − xi
,

ci3 = si − ci2,
ci4 = si+1 − ci2,

for i = 1, . . . ,m − 1. V̂ (x; c) is obviously C∞ on each interval
(xi, xi+1), and C1 globally.

This is a local method because the rational function interpolant
on each interval [xi, xi+1] depends only on the level and
slope information at the endpoints. Moreover, V̂ (x; c) is shape-
preserving. If the data is consistent with a concave increasing
value function, i.e., si > ci2 > si+1 > 0, then straightforward
computations show that V̂ ′(x; c) > 0 and V̂ ′′(x; c) < 0 for all x ∈

(xi, xi+1), that is, it is increasing and concave in the interval
(xi, xi+1). It is also cheaply computed since the approximation on
each interval depends solely on the data at its endpoints. This
approach does not require adding new nodes to the spline, nor the
determination of free parameters, features that are common in the
shape-preserving polynomial spline literature.

5. Multi-stage portfolio optimization problems

We next present a numerical example of DP with the shape-
preserving rational function spline Hermite interpolation to solve
multi-stage portfolio optimization problems, and compare it with
earlier methods. The numerical example assumes that there are
one stock and one bond available for investment, and the number
of investment periods is T = 6. For eachperiod, the bondhas a risk-
free return Rf = 1.04, and the stock has a discrete random return

R =


0.9, with probability 1/2,
1.4, with probability 1/2.

Let Wt be the total wealth, and let St be the amount of money
invested in the stock at time t , then the amount invested in the



Y. Cai, K.L. Judd / Economics Letters 117 (2012) 161–164 163
Fig. 1. Errors of optimal bond allocations from numerical DP.
bond is Bt = Wt − St , and the wealth at the next stage is

Wt+1 = Rf (Wt − St) + RSt ,

for t = 0, 1, . . . , T − 1.
We want to find an optimal portfolio St at each time t such that

the expected terminal utility is maximized, i.e.,

V0(W0) = max
St ,0≤t<T

E{u(WT )},

where u(W ) = −(W − K)−1 with K = 0.2. Moreover, we assume
that borrowing or shorting is not allowed in this example, i.e., Bt ≥

0 and St ≥ 0 for all t .
The DP model of this multi-stage portfolio optimization

problem is

Vt(W ) = max
B,S≥0

E{Vt+1(Rf B + RS)},

s.t.W − B − S = 0,

for t = 0, 1, . . . , T − 1, where W is the state variable, and B
and S are the control variables, and the terminal value function is
VT (W ) = u(W ).
The envelope theorem implies V ′
t (W ) = λ∗(W ), where λ∗(W )

is the shadow price for the constraint W − B − S = 0. From
u(WT ) = −(WT − K)−1, we know that WT must be always larger
than K . It follows that we should have Wt > KRt−T

f . Thus, since
shorting or borrowing is not allowed and R is bounded, we choose
the ranges [W t ,W t ] for approximating value functions as

W t+1 = max{min(R)W t , KR
t−T
f + ε},

W t+1 = max(R)W t ,

with a given initial wealth bound [W 0, W 0] = [0.9, 1.1], where
ε > 0 is a small number.

To evaluate the accuracy of our method, we compare it to the
true solution. The value function has no closed-form expression
because of the borrowing constraints. An example with a closed-
form solution would have been too easy for our method to solve.
The borrowing constraint makes this more challenging because
the bond strategy has a kink at the largest wealth where it binds.
However, we can compute the true solution for any initial wealth
using the treemethod described in Cai and Judd (forthcoming). The
tree method solves for the state-contingent values of all variables



164 Y. Cai, K.L. Judd / Economics Letters 117 (2012) 161–164
Table 1
Errors of optimal bond allocations for various γ .

γ Number of approximation nodes Errors at time
t = 0

0.5 10 0
2 10 1.1 × 10−6

4 20 7.3 × 10−4

40 1.1 × 10−4

6 20 1.7 × 10−3

40 3.4 × 10−4

8 20 3.9 × 10−3

40 5.3 × 10−4

at all nodes in the decision tree. We use the true solution to
measure the accuracy of our DP algorithm and compare it with the
accuracy of othermethods. The presence of a borrowing constraint
also means we should approximate the value function, which will
be C2, not the policy function which may only be C0. Polynomial
approximation theory tells us to focus on approximating the
smoother function.

Fig. 1 shows relative errors for bond allocations of alternative
DP algorithms:

log10


10−6

+
|B∗

t,DP − B∗
t |

Wt


,

where B∗
t are true optimal bond allocations from the tree method,

and B∗

t,DP are computed optimal bond allocation from numerical
DP algorithms, for Wt ∈ [W t ,W t ]. The squares are errors of
solutions of Algorithm 1 with Chebyshev interpolation using
Lagrange data, the x-marks are errors of Algorithm 2 with
Chebyshev–Hermite interpolation using Hermite data, and the
solid points are errors of Algorithm 2 with the rational function
spline interpolation using Hermite data. All the computational
results are given byMINOS (Murtagh and Saunders, 1982) in AMPL
(Fourer et al., 1990) via the NEOS server (Czyzyk et al., 1998).
For Algorithm 1 with Chebyshev interpolation or Algorithm 2
with Chebyshev–Hermite interpolation (Cai and Judd, 2012),
we use m = 10 Chebyshev nodes and degree-9 or degree-19
Chebyshev polynomials respectively. For Algorithm 2 with the
rational function spline interpolation, we use m = 10 equally-
spaced nodes.

We see that the errors are about O(10−1) or O(10−2) for
Chebyshev interpolation using Lagrange data, while they are about
O(10−3) or O(10−4) for Chebyshev–Hermite interpolation using
Hermite data. However, the errors of the rational function spline
Hermite interpolation is always aboutO(10−6), showing that it has
the best performance for approximating value functions.

Table 1 lists numerical errors of optimal bond allocations from
Algorithm 2 with the rational function spline interpolation, for
various values of γ .We see that even for large γ , the solutions from
Algorithm 2with the rational function spline interpolation are still
good.

Our new approximation method was always as fast as
any of the other algorithms. Therefore, the shape-preserving
rational function spline Hermite interpolation is reliable and often
substantially better than other approximation methods.

6. Conclusion

This paper presents a numerical DP algorithm with a shape-
preserving rational function spline Hermite interpolation. The
portfolio examples indicate that this approach is reliable and accu-
rate when solving nontrivial concave DP problems in economics.
The method described here relied only on the shape properties of
the problem, indicating that it can beused in awide variety of prob-
lems in economics, finance, and operations research.

Acknowledgment

Wegratefully acknowledgeNSF support (SES-0951576), andwe
thank the anonymous referees.

References

Bellman, R., 1957. Dynamic Programming. Princeton University Press.
Bertsekas, D., 2005. Dynamic Programming and Optimal Control, vol. I. Athena

Scientific.
Bertsekas, D., 2007. Dynamic Programming and Optimal Control, Vol. II. Athena

Scientific.
Cai, Y., 2009. Dynamic Programming and Its Application in Economics and Finance.

Ph.D. Thesis, Stanford University.
Cai, Y., Judd, K.L., 2012. Shape-preserving dynamic programming, in: Mathematical

Methods of Operations Research (forthcoming).
Cai, Y., Judd, K.L., 2012. Dynamic programming with Hermite interpolation. Hoover

Institution (working paper).
Cai, Y., Judd, K.L., 2010. Stable and efficient computational methods for dynamic

programming. Journal of the European Economic Association 8 (2–3), 626–634.
Czyzyk, J., Mesnier, M., Moré, J., 1998. The NEOS server. IEEE Journal on

Computational Science and Engineering 5, 68–75.
Fourer, R., Gay, D.M., Kernighan, B.W., 1990. Modeling language for mathematical

programming. Management Science 36, 519–554.
Goodman, T.N.T., 2001. Shape preserving interpolation by curves. in: Proceedings

of the 2001 International Symposium, pp. 24–35.
Judd, K., 1998. Numerical Methods in Economics. The MIT Press.
Judd, K., Solnick, A., 1994. Numerical Dynamic Programmingwith Shape-Preserving

Splines. Hoover Institution.
Murtagh, B., Saunders, M., 1982. A projected Lagrangian algorithm and its

implementation for sparse nonlinear constraints. Mathematical Programming
Study 16, 84–117.

Rust, J., 2008. Dynamic programming. In: Durlauf, S.N., Blume, L.E. (Eds.), New
Palgrave Dictionary of Economics, second ed. Palgrave Macmillan.

Schumaker, L., 1983. On shape-preserving quadratic spline interpolation. SIAM
Journal of Numerical Analysis 20, 854–864.


	Dynamic programming with shape-preserving rational spline Hermite interpolation
	Introduction
	Numerical methods for dynamic programming
	Dynamic programming with Hermite interpolation
	Shape-preserving rational function spline Hermite interpolation
	Multi-stage portfolio optimization problems
	Conclusion
	Acknowledgment
	References


