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Agricultural productivity depends critically on investments in research and development (R&D), but there
is a long lag in this response. Failing to invest today in improvements of agricultural productivity cannot
be simply corrected a few decades later if the world finds itself short of food at that point in time. This
fundamental irreversibility is particularly problematic in light of uncertain future population, income,
and climate change, as portrayed in the IPCC’s Shared Socio-Economic Pathways (SSPs). This paper finds
the optimal path of agricultural R&D spending over the 21st century for each SSP, along with valuation of
those regrets associated with investment decisions later revealed to be in error. The maximum regret is
minimized to find a robust optimal R&D pathway that factors in key uncertainties and the lag in produc-
tivity response to R&D. Results indicate that the whole of uncertainty’s impact on R&D is greater than the
sum of its individual parts. Uncertainty in future population has the dominant impact on the optimal R&D
expenditure path. The robust solution suggests that the optimal R&D spending strategy is very close to
the one that will increase agricultural productivity fast enough to feed the World under the most popu-
lous scenario. It also suggests that society should accelerate R&D spending up to mid-century, thereafter
moderating this growth rate.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Despite abundant and affordable food throughout much of the
developed world, currently 12.9% of the population in developing
countries is undernourished (World Food Program, 2016). From
2005 to 2050, world population is expected to increase by 50%,
from 6.5 in 2005 to 9.7 billion (United Nations, 2015). When cou-
pled with increases in income and changing diets, this translates
into substantial growth in the demand for agricultural production
(Pingali, 2007), which is expected to rise by somewhere between
60 and 100% (Alexandratos and Bruinsma, 2012; Tilman et al.,
2011). Studies looking at the future supply and demand for food
indicate that meeting this demand may pose significant challenges
for the food and environmental systems (Piesse and Thirtle, 2010).
The extent of environmental pressure and the resulting food price
changes will hinge critically on the evolution of productivity
growth in agriculture (Baldos and Hertel, 2015).

Since the 1950s, increased agricultural productivity has allowed
food availability to outpace demand on a global scale, resulting in a
long run downward trend in world prices. Public and private
investments into agricultural research and development (R&D)
have been the foundation for this achievement. Studies have
shown that public investment in agricultural research has resulted
in significant economic benefits (Fuglie and Heisey, 2007).1 How-
ever, while R&D spending globally has continued to rise, its rate of
growth has fallen, and this growth has shifted in favor of developing
countries (Pardey et al., 2016).

Global R&D picked up strongly over the 2000–2008 period, ris-
ing by 22%, coinciding with rising food prices. Accelerated spend-
ing in China and India accounted for close to half of the increase
y across
orted in
l. (2014)
13.6%.
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(Beintema et al., 2012). Several studies report estimates of the
additional investment in agricultural R&D needed to meet pro-
jected increases in demand by 2050 (Beintema and Elliot, 2009;
von Braun et al., 2008; Rosegrant et al., 2008). It is likely that an
increasing part of the R&D expenditures over the coming decades
will be focused on adaptation to climate change which is expected
to act as a brake on productivity growth (IPCC, 2014). The most
important determinants of the demand for food in the future are
the size of global population and per capita income growth
(Baldos and Hertel, 2016). Developments in these variables in the
21st century are very uncertain. Based on the Shared Socioeco-
nomic Pathways (SSPs) (O’Neill et al., 2014; IIASA, 2015), the
spread between low and high global population levels in 2100 is
5.8 billion people, and average global per capita income in 2100
ranges between 22 and 138 thousand 2005USD across the SSPs.
This translates into greatly differing global food requirements by
the end of this century. On the supply side, future agricultural pro-
ductivity is also highly uncertain—a problem which is confounded
by the uncertain impacts of climate change on agriculture
(Rosenzweig et al., 2014).

The problem posed by this future uncertainty in the demand
and supply of agricultural products is further complicated by the
extremely long lag time involved in translating agricultural
research expenditures into realized productivity gains. For exam-
ple, it took more than 80 years after the invention of hybrid corn
for this important innovation to be fully disseminated in the Uni-
ted States and, in the case of Bt corn, this lag was more than a cen-
tury (Pardey and Beddow, 2013). The fact that it takes decades for
research spending to have an impact means plans cannot simply be
adjusted in 2050 or 2100 if the world finds itself in food shortfall or
surplus at that point in time. Long run planning is required, and
this must be done in an environment of great uncertainty. Unfortu-
nately, published work on this topic to date has not brought to bear
the necessary tools for robust decision making under uncertainty.
This study aims to do so by building on the FABLE model of optimal
global land use (Steinbuks and Hertel, 2016). We begin by charac-
terizing the lagged relationship between R&D spending and agri-
cultural productivity and use this to estimate the optimal path of
R&D spending over the 21st century. Since this depends on the
uncertain global economic environment, we do so for each of the
SSPs, generating five markedly different paths of optimal R&D
spending. We then find the preferred path of spending by applying
a criterion which seeks to minimize the maximum regret associ-
ated with making decisions based on one SPP, when another one
turns out to be the realization.
2. Literature review and knowledge gaps

There is a rich literature on the impacts of agricultural research
on farm productivity, much of it originating with the work of T.W.
Schultz and his students at the University of Chicago (Alston et al.,
2010). Griliches (1957, 1963) who sought to understand the dis-
semination of new technologies and their role in determining
aggregate productivity growth. Hayami and Ruttan (1970) identi-
fied the role of relative prices in ‘inducing innovation’ in agricul-
ture. Huffman and Evenson (2008) measured the contribution of
public and private science to US agricultural productivity growth.
Alston et al. (2010) find that the lag between R&D spending and
farm productivity outcomes can persist for as long as five decades.
Fuglie (2012) has taken this work to the global scale, documenting
the links between agricultural knowledge capital, human capital
and agricultural productivity growth across many different
countries.

More recently, researchers have sought to understand the con-
tribution of agricultural technologies to environmental outcomes,
including climate mitigation (Burney et al., 2010; Stevenson
et al., 2013). These researchers have found that higher yielding
varieties historically reduced the amount of land conversion which
would otherwise have occurred, thereby reducing global green-
house gas (GHG) emissions. Lobell et al. (2013) find that future
R&D can contribute to both effective climate adaptation as well
as contributing to future mitigation of GHGs. Other recent research
has sought to understand the link between agricultural R&D, tech-
nology adoption and agricultural development more generally
(Maredia et al., 2014). However, to date, none of these studies have
formally addressed the question of agricultural R&D investments
as a problem of irreversible decision making under uncertainty.
Yet, with the extremely long lag between such investments today
and their potential future payoffs (Alston et al., 2010; Pardey and
Beddow, 2013), along with the sizable demographic, economic
and climatic uncertainties which the world faces, developing an
optimal investment strategy is a very difficult task. There is a clear
knowledge gap calling for the application of robust decision tools
to the determination of optimal pathways for agricultural research.

Robust decision making has a very rich tradition (Lempert et al.,
2006). It has grown increasingly important in the context of global
change and decision making under alternative futures. In this con-
text, there has been a resurgence of interest in scenario analysis
(Trutnevyte et al., 2016). In an effort led by Brian O’Neill at NCAR,
a set of Shared Socio-economic Pathways (SSPs) have been devel-
oped for use in Integrated Assessment Models for global change
analysis (O’Neill et al., 2014). It lays out a set of future scenarios
for global demographic, economic and climatic changes which
are internally consistent, and which, taken together, span the
two-dimensional space characterized by alternative socio-
economic challenges for adaptation, on the one hand, and mitiga-
tion challenges on the other. Among others, the five scenarios
include a low economic growth with high population future, a high
economic growth with high emissions future, and a sustainable
development future. Together, the five SSPs span the global uncer-
tainty space which should be considered by those formulating glo-
bal agricultural research policy over the 21st century.

In this paper, we seek to fill these knowledge gaps by leveraging
earlier work on the linkage between agricultural R&D and produc-
tivity. We combine this knowledge with the latest developments in
robust decision making under uncertainty in order to understand
how future uncertainties, such as those posed by the alternative
SSPs, should influence decision making about agricultural research
at the global scale.
3. Theory and methods

3.1. A dynamic model of R&D investment

To understand the impacts of uncertainty in future population,
income and climate change on the optimal level of global invest-
ment in agricultural R&D over the 21st century, we build on a
dynamic, forward-looking, partial equilibrium (PE) model of land
use (Steinbuks and Hertel, 2016). In our model, a social planner
maximizes the sum of discounted payoffs, subject to endowments,
production functions and other constraints. The social planner’s
payoff in each period takes into account global population and
per capita welfare (utility). Per capita utility is derived from the
consumption of land-based, as well as other, goods and services.
The land-based final consumption goods include: crop-based food,
livestock-based food, wood products, and energy (including bioen-
ergy). Consumer preferences are represented with An Implicit,
Directly Additive Demand System (Rimmer and Powell, 1996)
which has been estimated on international cross-section data
(Reimer and Hertel, 2004). This demand system is very flexible in



2 In a robustness check, we also experimented with five-year time steps, in place of
decadal time steps, and found that it did not change our results significantly.
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Y. Cai et al. / Food Policy 70 (2017) 71–83 73
its description of the evolution of consumer demands as per capita
incomes grow (Cranfield et al., 2002), with the marginal budget
share for food products falling towards zero as per capita income
rises.

Production of the land-based final consumption goods, as well
as intermediate inputs, is explicitly modeled within the PE frame-
work. A schematic diagram of this stylized economy, with a focus
on land-based goods and services is presented in Table 1, where
the rows refer to inputs, including endowments and intermediate
inputs, and the columns pertain to sectors in the PE model, as well
as final consumption. Here it can be seen that production of crops
requires land and fertilizers. The agrochemical sector converts fos-
sil fuels into nitrogen fertilizer that is used in production of crops
used for food, feed and biofuels. The energy sector combines petro-
leum and biofuels to produce energy services. The forestry sector
produces timber, which is further processed into wood products.
A composite of all other goods and services is used as other inter-
mediate inputs, as well as representing competing final consump-
tion. The production of these other goods and services is not
captured within the PE model, but rather is given exogenously.

We solve a social planner’s problem with perfect foresight. The
social planner’s objective is to maximize the total welfare (i.e., pre-
sent value of global utilities over time):

max
I;X

X1
t¼0

dtUðytÞPt ð1Þ

where I is the R&D spending path, X is the vector path of resource
allocation variables, d is the discount factor, U is per capita utility
derived from per capita consumption of five final goods, yt , and
Pt is global population at time t. Per capita utility is given by:

UðytÞ ¼
CðytÞð Þ1�c
1� c

ð2Þ

where c > 0 represents inverse of the intertemporal elasticity of
substitution. Here CðytÞ is the per-capita consumption aggregator
of the multiple goods and services yt , and is computed implicitly
using AIDADS preferences (see Appendix for details).

Agricultural output depends on inputs used and the overall
level of technology represented by Total Factor Productivity
(TFP), as well as climate. TFP, in turn, depends on investments in
agricultural research. In the model, both TFP and R&D are endoge-
nous variables, with increases in the global stock of R&D driving
growth in TFP. As previously noted, the diffusion of innovations
in agriculture takes many years, so there is a lag between the
R&D expenditures and the productivity gains at the farm level that
can take decades to be fully felt (Piesse and Thirtle, 2010). In seek-
ing to find a lag structure which best explains the relationship
between R&D spending and total factor productivity (TFP) in agri-
culture in the United States, Alston et al. (2010) choose a distribu-
tion of weights which peaks at around 25 years (for the logarithmic
model), with R&D impacts persisting for nearly half a century after
the initial expenditure. This long lag is confirmed by Baldos et al.
(2015) who adopt a Bayesian approach to estimating the US
R&D-to-farm productivity lag structure, thereby providing esti-
mates of the two parameters in the underlying gamma
distribution.

We use the log-linear model and its parameter values from
Baldos et al. (2015) for the relationships between TFP (At) and
R&D knowledge stock (St), and treat R&D knowledge stock (St) as
a weighted combination of annual average decadal investments
in R&D (It�i for the decadal period ½t � i; t � iþ 1�):
lnðAtÞ ¼ /0 þ /1 lnðStÞ ð3Þ

St ¼
X5
i¼1

ciIt�i ð4Þ
where /0;/1 and ci are estimated mean values taken from Baldos
et al. (2015).2 Specifically, the elasticity of TFP with respect to R&D
knowledge stock, the ‘‘R&D elasticity”, /1 is 0.3.

In light of the productivity spillover effects from developed to
developing countries, on the one hand, and rapid improvements
in the quality of agricultural R&D activities worldwide on the other,
instead of using relatively poor quality global data on R&D to esti-
mate the parameters above, we use parameters estimated on U.S.
data to inform the relationship between agricultural R&D and pro-
ductivity at global scale over the coming century. This lag structure
suggests that the maximum impact of an increase in R&D spending
today will be felt between two and three decades from now, while
its total effects linger for the next 50 years Baldos et al. (2015). This
poses a significant challenge for decision makers, as the decision
not to invest today is irreversible. If events in 2040 call for higher
levels of agricultural productivity, it is not possible to immediately
attain these higher productivity levels by spending more on R&D in
2040. That process should have been started today.

In this framework, agricultural output depends not only on
inputs used and TFP, but also climate – specifically the global mean
temperature increase. Meta-analysis of crop impacts of climate
change (Challinor et al., 2014) shows that global yields will be
damaged by global warming with yields dropping on average
4.9% per 1ºC increase in temperature Tt . To reflect the impact of cli-
mate change on crop yields in the model, we multiply TFP (i.e., At)
by ð1� gTtÞ where g ¼ 0:049, resulting in an outcome whereby
past R&D becomes less efficient in delivering agricultural output
under warmer climate – an approach consistent with the latest
IPCC analysis (IPCC, 2014). Since the temperature pathway varies
by SSP, this means that climate uncertainty will also affect our
optimal investment decisions.

3.2. Characterizing future global uncertainties using SSPs

It is extraordinarily difficult to characterize future economic,
demographic and climate uncertainties. Ideally, we would like to
obtain a joint probability distribution specifying the likelihood of
any combination of global GDP, population and temperature to
be realized at each point in time over the next century. This would
allow us to find the investment pathway which maximizes the pre-
sent value of the stream of expected utilities over the time horizon
in question. Unfortunately, developments in these global economic
variables over the 21st century are very uncertain and they depend
on a host of drivers, including government policies, civil conflict
and climate response to elevated CO2 concentrations in the atmo-
sphere. Furthermore, these drivers are inter-related, with high
income growth tending to generate greater CO2 emissions, but also
contributing to lower fertility rates and therefore slower popula-
tion growth. It is simply not possible to develop the requisite
multi-variate probability distribution. Therefore, we turn to the
work undertaken by the global change community in the context
of integrated assessment modeling. Specifically, a set of Shared
Socioeconomic Pathways (SSPs) has been developed to cover the
broad range of potential global economic and climate futures
(O’Neill et al., 2014; IIASA, 2015).

Fig. 1 reports the evolution of global population, total income,
income per capita and global average temperature for the five
SSPs.3 SSP2 is dubbed the ‘middle of the road’ scenario, since popu-
lation and income growth rates, as well as the development of global
temperature, are based on business-as-usual (BAU) conditions. SSP1
is the ‘sustainability scenario’ in which population growth peaks at



Table 1
Partial equilibrium model of land use.
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mid-century and the global mean temperature rise in 2100 is just
2.5 �C. SSP3 contrasts sharply with these scenarios, with ‘fragmenta-
tion’ of the world economy leading to low income growth and pop-
ulation reaching nearly 13 billion (and still rising) at the end of the
century. SSP5, ‘conventional development’, entails heavy fossil fuel
consumption, which in turn fuels high income growth, thereby lead-
ing to the highest temperature increase of all—almost +4 �C above
current levels by 2100. SSP4, the ‘inequality scenario’, has lower
rates of income growth with slightly higher population in 2100 than
SSP2. Inspection of the values of key variables in 2100 give a sense of
the tremendous uncertainty foreseen by these SSPs: the spread
between low and high global population levels in 2100 is 5.8 billion
people, and the average global per capita income in 2100 ranges
between 22 and 138 thousand 2005USD across the SSPs. Global aver-
age surface temperature in 2100 varies from 2.5 to 4 �C.
3.3. The Minmax Regret (MMR) method for robust decision making

Absent an explicit probability distribution for the uncertain dri-
vers of global change, we must find another means of determining
the optimal response to future uncertainties. The approach taken
here involves choosing the future path of investment in R&D which
minimizes the maximum regret (MMR) associated with future
choices. Such regrets arise when we plan for one future – SSP2
(business as usual) for example – and the actual outcome is differ-
ent – possibly SSP3 (the high population scenario). In this case, we
might wish that we could turn back the clock and invest more in
agricultural R&D in order to feed nearly 13 billion people at the
end of this century. However, given the long lag from R&D to
TFP, this would be problematic. The MMR solution factors in such
regrets, and thereby proposes a different pathway which is deemed
an acceptable outcome irrespective of which candidate scenario
may be correct. In this way, it ameliorates the conservatism of
the min-max criterion’s dependence upon the worst-case scenario.
The MMR solution selects a specific path of investment in agricul-
tural R&D which is robust to future global economic, demographic
and climate uncertainties.

To clearly represent the dependence of the production functions
on the population, global income and change in global surface tem-
perature, we represent them as follows:
yt;k ¼ FðAt ;Xt;Pt;k; Et;k; Tt;kÞ ð5Þ
wherePt;k is the kth SSP projected world population path, Et;k is the
kth SSP income path, Tt;k is the kth SSP temperature path, At is level
of technology in agriculture resulted from R&D spending path I, Xt is

the vector of resource allocation variables Xi;j, and yt;k is the vector
of per-capita consumption of final goods produced under the deci-
sion path ðI;XÞ and the kth SSP scenario at time t. The production
functions (5) represent the relationships between total output and
per capita consumption of each good produced in the land-based
economy, the constraint on other goods and services, as well as
the market clearing constraints ((A.4)–(A.19) in the Appendix) with
the kth SSP scenario.

To find the optimal path of R&D spending in the face of future
uncertainties, we compute:

WðI;X; kÞ ,
X1
t¼0

dtUðyt;kÞPt;k

which is the total welfare associated with policy paths ðI;XÞ and SSP
scenario k. We then solve for:

GðkÞ ,max
I;X

WðI;X; kÞ ð6Þ

subject to the constraints (2), (3), and (5), corresponding to the kth
SSP scenario. That is, for each SSP scenario we find the optimal path
of agricultural R&D spending I and resource allocation X. The regret
function is defined as

RðI; kÞ , GðkÞ �max
X

WðI;X; kÞ ð7Þ

for a given R&D spending path I and SSP scenario k. That is, for the
kth realized SSP scenario, the regret is difference between (a)
wealth attained when social planner can choose both optimal
R&D spending and resource allocation and (b) wealth attained when
social planner can choose resource allocation, but R&D spending is
pre-determined. We then solve the MMR model as follows:

min
I

max
k

RðI; kÞ ð8Þ

by using the computational method in Cai and Sanstad (2016). Note,
the resulting vector of optimal per capita consumption y�

t;k is now
given by:



Fig. 1. SSP population (in billion), income (in trillion USD), their associated per-capita income (in 1000 USD), and changes in global surface temperature (in Celsius) relative to
the beginning of the 21st century.
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y�
t;k ¼ F A�

t ;X
�
t;k;Pt;k; Et;k; Tt;k

� �
ð9Þ
where A�
t is the optimal TFP resulting from the optimal R&D spend-

ing I� in the MMR model (8), and X�
t;k is the corresponding optimal

solution of the maximization problem in the right-hand side of (7)
for the given kth SSP scenario.

This formulation of MMR assumes that the R&D spending path I
is the robust decision that is independent of scenarios (and I deter-
mines optimal At), while the optimal decision variables X are
assumed to be dependent on scenarios, because these resource
allocations X can be optimally adjusted as the world realizes which
scenario will actually unfold. Scaling of the regret function RðI; kÞ
will not change the choice of optimal decisions. Here, we use the
present value of the flow of global consumption loss to quantita-
tively measure the regrets (see Appendix for details). (In the
Appendix, we also present MMR results when both uncertainty
in the drivers of food demand and supply, as well as the elasticity
of TFP with respect to R&D stock (i.e., /1) are simultaneously taken
into account.)
4. Results

4.1. Results from the deterministic analysis

The dashed lines in Fig. 2 display the optimal deterministic path
for R&D spending, and hence agricultural productivity, for each of
the five SSP scenarios. These are calibrated to match observed,
annual average global public R&D spending, $30 billion, over the
2004–2011 period (constructed using data in Pardey et al.
(2016)). SSP3 (high population) shows the highest rates of optimal
R&D spending. The lowest spending paths are for SSP1 and SSP5,
which have slower population growth, accompanied by higher
income per capita growth. This illustrates the interaction between
policies which moderate population growth (e.g., investments in
female education) and agricultural R&D policy. Overall, optimal
agricultural R&D spending in 2100 varies by a factor of 3.4—rang-
ing from about $105 billion to $360 billion, depending on the SSP
scenario. This raises the important question: given the inherent
uncertainty about the future, which spending path should be cho-
sen? If we plan for the sustainability outcome (SSP1), but fail to



Fig. 2. Optimal Paths of R&D spending and TFP. The solid line represents the optimal path of the min-max regret (MMR) problem, and each dashed line represents solution of
the deterministic model for specific SSP scenario path (e.g., the black dashed line represents solution of the deterministic model assuming population, income, and climate
change paths are given exogenously by SSP3).
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achieve this and instead revert to a fragmented global economy
(SSP3), there will be serious shortfalls over the 21st century in
R&D stock and productivity levels. This leads us naturally to the
MMR approach.

4.2. Minimizing the maximum regret

As noted above, if we could assign probabilities to each of these
SSPs, we might logically seek to maximize the expected value of
our objective function. However, the alternative pathways repre-
sented by the SSPs are simply alternative storylines intended to
encompass a wide range of possible future states of the world.
There are no associated probabilities, although some, like the mid-
dle of the road (SSP2), appear more likely than others. The essential
challenge in this decision making problem boils down to the fol-
lowing: what if we choose the optimal R&D action today with
one SSP in mind, and then discover that the world economy is, in
fact, following a different SSP? Given the long lag between R&D
expenditures and productivity, it is not possible to return to the
present day and chart a new course of R&D spending. How large
is the regret which we would experience if we set off on the wrong
path today? As noted above, we measure this as the present value
of the flow of global consumption forgone by choosing the wrong
SSP path for R&D spending, as opposed to the SSP which is actually
realized. A complete matrix of regrets under alternative actions/
outcomes is reported in Table 2.

The rows in Table 2 refer to actions taken. For example, the first
row refers to the case where the investment path is chosen assum-
ing that SSP1 will be realized. There are six rows, corresponding to
the five SSPs as well as the MMR solution whereby we consider all
SSPs as possible outcomes and seek to minimize the maximum
regret across all outcomes. The columns in Table 2 refer to different
realizations, comprising each of the five SSPs. Therefore, entries in
the table report the regrets which arise when a given row action is
taken and the associated column outcome is realized. It makes
sense that the diagonal elements in this table are all equal to zero,
since these are the cases where the planner accurately anticipates
the future outcome. The off-diagonal elements detail the non-zero
regrets which arise when the planner is wrong about the future.

Based on the entries in Table 2, we see that the largest regret
occurs when the planner makes R&D investment decisions based
on SSP5 (low pop, high temperature, high income per capita), yet
SSP3, the high population and low income per capita path, is the
true outcome. The associated loss is $250 billion—a discounted
value which is more than eight times the amount of initial R&D
spending. This is followed closely by the level of regret ($200 bil-
lion) which arises when we plan for SSP1, the low population
and low temperature trajectory, therefore investing relatively less
in R&D today, however, we end up on SSP3. SSP3 is the scenario
with high population, low per capita income and higher tempera-
ture increase—a scenario which calls for greater investment in R&D
from the start. The other regrets are much smaller, but even in the
best case, when we base our R&D spending decisions on the SSP4
scenario, the largest loss (final column in Table 2) still reaches
$50 billion and amounts to considerably more than the current
flow of global public R&D spending.

As explained in the methods section, we believe that the most
natural approach to decision making under this type of uncertainty
is to avoid choosing a path which is tailored to just a single SSP.
Rather, we propose finding the R&D pathway which minimizes
the maximum regret (MMR) (Cai and Sanstad, 2016; Hall et al.,
2012; Iverson and Perrings, 2012). The MMR investment and pro-
ductivity pathways are shown by the solid red line in Fig. 2. Note
that the MMR path lies between the extremes of the deterministic
paths up to 2030, but then deviates toward SSP3 optimal R&D
spending path and essentially follows SSP3 to the end of the cen-
tury. To put these total figures in perspective, the MMR expendi-
tures on agricultural R&D represent about 0.05%, 0.1% and 0.07%
of business as usual Global World Product in the beginning, middle
and end of the 21st century, respectively. The final row in Table 2
demonstrates that the largest loss using the MMR solution is
$33 billion, which is much less than the largest loss using the
deterministic solution associated with any one specific SSP
scenario.

4.3. Assessing the interaction between different types of uncertainty

Given the interplay between optimal R&D policy and the multi-
ple sources of long-run uncertainty in the global economy, it is
important to see how different the long-run policy would be if it
were built up from a sequence of analyses, each of which considers
just one source of uncertainty at a time. Fig. 3 reports results from
these experiments, designed to isolate the interaction effects
among different sources of uncertainty (see appendix for details
on the methodology used to do this). The plotted lines report the
additional R&D spending called for under the MMR criterion if the
underlying sources of uncertainty are considered one-at-a-time
(the three dashed lines). In this case, we see that climate



Table 2
Present value of the flow of global consumption loss (in billion USD).

Realization of SSP scenario Largest

SSP1 SSP2 SSP3 SSP4 SSP5 Loss

Sol. using SSP1 0 24 200 30 3 200
Sol. using SSP2 18 0 68 1 32 68
Sol. using SSP3 80 33 0 29 100 100
Sol. using SSP4 20 1 50 0 34 50
Sol. using SSP5 3 45 250 51 0 250

Sol. using MMR 32 27 33 32 33 33

Fig. 3. Additional R&D spending of MMR solutions relative to the deterministic
solution with SSP2.
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uncertainty (red dashed line) does not significantly affect the opti-
mal R&D spending path. In contrast, considering only population
uncertainty gives rise to much higher levels of R&D than under
the BAU scenario (i.e., SSP2). This reflects the very wide range of
possible population outcomes in 2100 (7 billion vs. nearly 13 bil-
lion). The impact of income uncertainty is most important in the
first half of the century, before the world’s population reaches
higher average income levels at which point the income elasticity
of demand for food declines sharply. When we sum all three of the
one-at-a-time MMR solutions together, we obtain the solid black
line in Fig. 3. This suggests that, ignoring interactions amongst
the different sources of uncertainty, society should move to higher
levels of R&D spending, with the increment gradually increasing
and reaching roughly $160 billion in the end of the century (rela-
tive to optimal R&D spending in SSP2).

By way of contrast, Fig. 3 also reports the MMR solution (the
solid red3 line) when all three sources of uncertainty are simulta-
neously considered. The difference between this and the summa-
tion of the individual MMR solutions is a useful measure of the
policy impact of interacting uncertainties. When the uncertainties
are simultaneously considered, the optimal R&D path (the solid red
line) begins rising sooner and rises to a spending level which
remains higher than the individual uncertainty path (the solid
black line) from 2040 to the end of the century. In summary, the
interaction effects among economic, demographic and climate
uncertainties result in a substantial reallocation of the time path
of R&D spending, calling for a substantial increase in the additional
R&D desired.
5. Discussion

From a methodological point of view, this work has demon-
strated, for the first time, how long run uncertainties affect soci-
ety’s optimal allocation of spending on agricultural R&D. In order
to address this complex problem, we have made a number of sim-
plifying assumptions which should be relaxed in future work.
Firstly, we have focused on public agricultural R&D investments
and have not included private expenditures, the share of which
in total R&D has been rapidly expanding during the last three dec-
ades. One reason we have not included private investments is that
they are less studied and data on global private R&D are not readily
available. Another reason is that these investments are fundamen-
tally different in character, with private R&D expenditures being
directed to investments with faster payoffs. Private sector invest-
ments also tend to leverage public sector advances, suggesting a
much more complex model of public–private interaction
(Huffman, 2001).

Perhaps the most obvious limitation of this study is the global
scale of our analysis. In reality, the productivity of R&D expendi-
tures in improving agricultural technology varies greatly by region,
and this depends on investments in human capital and extension
services (Fuglie, 2012). With sufficient data, one could estimate
Eqs. (3) and (4) for every major producing region, globally. Of
course, R&D investments in one region can spillover and benefit
other regions (Alston et al., 2010)—a factor which becomes impor-
tant once one disaggregates individual regions. Population and
income growth rates, as well as climate impacts, also vary dramat-
ically by country. However, in a globally integrated market, inter-
national trade can facilitate the exchange of commodities
between deficit and surplus regions, thereby facilitating adjust-
ment to differential supply and demand growth rates (Baldos and
Hertel, 2015). In this study, we are implicitly assuming that such
arbitrage will occur over the long run.

Another, more subtle limitation of our global analysis is the
absence of any consideration of the importance of the spatial loca-
tion of crop production. Beddow and Pardey (2015) show that as
much as one-fifth of the growth in US corn output over the period:
1879–2007 was due to the spatial movement of production in
response to changes in climate and technology. By adopting an
aspatial approach, we are likely understating the potential for
adaptation to climate change, as well as new technological
opportunities.

Uncertainty in the TFP ‘production function’ is also an impor-
tant consideration. When we take into account both uncertainties
in future population, income and climate change, represented by
SSPs, as well as the elasticity of TFP with respect to R&D knowledge
stock, we find that uncertainty in TFP response to R&D has little
impact on the robust R&D spending (see Appendix). But the max-
imum regret increases significantly due to the additional source
of uncertainty. Without using the MMR solution, the worst case
regret rises to $456 billion, while the largest loss using the MMR
solution is $63 billion.
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Given the growing literature on R&D-based adaptation to cli-
mate impacts in agriculture (Lobell et al., 2013; Nelson et al.,
2010), it is perhaps surprising that uncertainty in climate change
plays a relatively small role in the optimal investment decisions
within our framework. There are several reasons for this outcome.
Firstly, when compared to the demand-side uncertainty emanating
from population and income, the supply-side impacts of tempera-
ture changes envisioned under the SSPs are modest. Population in
2100 varies by a factor of nearly 2, while the ratio of high to low
per-capita income in 2100 is almost 5. Against this backdrop, the
1.5�C temperature difference in 2100 between the most extreme
SSPs is quite modest and does not reflect the full range of possible
temperature outcomes in 2100 (IPCC, 2013). Moreover, the 1.5 �C
temperature translates into only a 7.35% crop yield difference as
we assume 4.9% decrease in crop yields per 1 �C increase in tem-
perature. We find that the climate uncertainty foreseen by the SSPs
leads to about 17% difference of R&D spending in 2100. Of course,
there is also great uncertainty in the response of agricultural yields
to these higher temperatures and we have not factored this type of
response uncertainty into our analysis.

Finally, note that, while there is great uncertainty in future per
capita incomes, this type of uncertainty has a relatively modest
impact on optimal path of R&D spending. The reason for this out-
come is that marginal budget share spent on food approaches zero
at very high levels of income. Of course, how quickly marginal bud-
get shares fall at higher levels of income is itself uncertain. Inclu-
sion in the analysis of this type of parametric uncertainty, along
with uncertainty in the response of productivity to R&D would
increase the uncertainty associated with demographic and eco-
nomic growth. Overall, we believe that the finding that population
uncertainty dominates climate and income uncertainties as deter-
minants of optimal R&D in agriculture over the 21st century is
robust. However, in the longer run, beyond 2100, as temperatures
continue to rise, and critical thresholds are exceeded, climate
impact uncertainty will surely loom large.
6. Conclusions and policy implications

The central finding in this paper is that public spending on agri-
cultural R&D should be increased, and this increase should be
‘front-loaded’ towards the first half of the 21st century. Specifi-
cally, we estimate that the growth rate in agricultural R&D spend-
ing should rise to 4.2% per year up to 2050, thereafter falling off, for
an overall average growth rate of 2.6% per year over the entire 21st
century. Investments in agricultural productivity in the near term
are important due to the great uncertainty associated with envi-
ronmental and socio-economic outcomes after 2050. According
to the SSP scenarios utilized here, world population in 2100 could
be as low as 7 billion or as high as 13 billion. World per capita
income could be anywhere from $20,000 to $140,000. In addition,
temperature anomalies could be in the range from 2.5 to 4 �C.
Complicating this massive uncertainty is the long lag between pub-
lic R&D investments and increases in agricultural productivity
which means that we cannot afford to wait till 2050 to act. Given
our analysis of society’s potential regrets associated with planning
for one future and ending up with another, it is clear that the most
dire outcomes arise when we plan for the low population trajecto-
ries (SSP1 or SSP5), yet we end up on a high population path such
as SSP3, in which case feeding the world becomes a significant
challenge. In this context, agricultural R&D investments in the
coming decade offer an important insurance policy against uncer-
tainty in the evolution of the global economy over the 21st century.

Future research on the subject of optimal agricultural R&D
under uncertainty should be a high priority. As previously noted,
our findings lack geographical specificity. Yet, we know that the
locus of agricultural R&D spending is rapidly shifting from devel-
oped to large developing economies, including China, India and
Brazil. Assuming less than perfect spillovers from innovating
regions to other countries, this will have important implications
for the pattern of future productivity and agricultural output
growth. Unfortunately, R&D investments in Sub-Saharan Africa
(SSA) remain far below that in other regions, even though the
SSA region continues to experience extremely rapid population
growth. Without significant investments in improved agricultural
productivity, many of the countries in Africa will be forced to
import ever more of their food supply. This, in turn, raises impor-
tant questions about their ability to pay for these imports, as well
as the importance of maintaining a free and open world trade pol-
icy regime which will guarantee unfettered access to the world’s
food supplies. In summary, investments into agricultural R&D can-
not be viewed in isolation from other key elements of food and
economic policy.
Appendix A. Specification of the PE land use model

As noted in the text, we build on a dynamic forward looking
partial equilibrium (PE) model of land use (Steinbuks and Hertel,
2016) in which a representative consumer derives utility from
land-based and other goods and services. The land-based final con-
sumption goods include: crop-based food, livestock-based food,
wood products, and energy (including bioenergy). Here, we pro-
vide more detail on the underlying consumption and production
relationships in the model employed in the analysis. Recall that,
in the deterministic model, we solve a social planner’s problem
with perfect foresight. The social planner’s objective is to maximize
the total welfare (i.e., present value of global utilities):

max
I;X

X1
t¼0

dtUðytÞPt ðA:1Þ

where I is the R&D spending path, X is the vector path of resource
allocation variables, d is the discount factor, U is per capita utility
derived from per capita consumption of five final goods, yt , and
Pt is global population at time t. Per capita utility is given by:

UðytÞ ¼
CðytÞð Þ1�c
1� c

ðA:2Þ

where c > 0 represents inverse of intertemporal elasticity of substi-
tution. Here CðytÞ is the per-capita consumption aggregator of the
multiple goods and services yt , and is computed implicitly using
AIDADS preferences:

lnðCðytÞÞ ¼
X

q¼cfood;lfood;e;w;o

aq þ bqCðytÞ
1þ CðytÞ

� �
ln yqt � yq
� �" #

� 1� lnð!Þ

ðA:3Þ
where a; b, and ! are parameters, and yq is subsistence level. When
c ¼ 1, the utility is UðytÞ ¼ lnðCðytÞÞ, equivalent to the AIDADS util-
ity (Rimmer and Powell, 1996).

The social planner’s optimization problem is subject to endow-
ment availability, production function, market clearing and transi-
tion law constraints defined below. The objective function of the
maximization problem (A.1) has infinite horizon and cannot be
computed exactly. In our computational examples, we use the
summation of discounted utility over 300 years as its approxima-
tion, and focus on first 100 years of simulation in the analysis.
The model is solved with decadal time steps.

Production activities in the partial equilibrium model of land

use are indexed with superscript j. Let Xi;j
t denote quantity of inter-

mediate input i used in production sector j. Market clearing for
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each produced good i is Qi
t ¼

P
jX

i;j
t . X

o;j
t denotes quantity of other

g&s used in production sector j. Production output i that is used
as an intermediate input and not as a final consumption good is

denoted by Qi
t . If output i is used as an intermediate input in activ-

ity j only, then market clearing condition is Qi
t ¼ Xi;j

t . To eliminate

this ‘‘dummy” constraint, Qi
t is used to denote both output i and

input i used in production sector j. For example, the land-

fertilizer composite is used in crop production only. So, Qlf
t denotes

both land-fertilizer composite output and land-fertilizer composite
input in crop production. Subscript ‘‘0” refer to observation at the
point of normalization (i.e., year 2004). LCt ; L

P
t , and LFt denote crop-

land, pasture land, and forest land, hit represent exogenous techno-
logical improvement, and At represents endogenous level of

technology in agriculture (TFP). Y j
t denotes total consumption of

final good j and output of respective sector, so the per-capita con-
sumption is

yt ¼ ðycfoodt ; ylfoodt ; yet ; y
w
t ; y

o
t Þ ¼ ðYcfood

t ; Ylfood
t ;Ye

t ;Y
w
t ; Y

o
t Þ=Pt ðA:4Þ

where ycfoodt ; ylfoodt ; yet ; y
w
t , and yot denote per capita consumption of

crop-based food, livestock-based food, energy services, wood prod-
ucts, and other g&s, respectively. Each production activity is repre-
sented with a constant elasticity of substitution (CES) production
function, where a j represents base year cost share of specific input
used in production of j (e.g. crop input used in food production),
ð1� a jÞ represents base year cost share of other g&s input, and

q j ¼ ðr j�1Þ
r j where r j is the elasticity of substitution. These produc-

tion functions are as follows:

� Petroleum production function:
Qp
t ¼ Qp

0 ap Xex;p
t

Xex;p
0

� �qp

þ ð1� apÞ Xo;p
t

Xo;p
0

� �q
 !1=qp

ðA:5Þ

where Xex;p
t denotes fossil fuels used in petroleum production.

� Fertilizer production function:
Qfert
t ¼ Qfert

0 afert Xex;fert
t

Xex;fert
0

 !qfert

þ ð1� afertÞ Xo;fert
t

Xo;fert
0

 !qfert0
@

1
A

1=qfert

ðA:6Þ

where Xex;fert
t denotes fossil fuels used in fertilizer production.

� Cropland and fertilizer composite production function:
Qlf
t ¼ Qlf

0 alf LCt
LC0

 !qlf

þ ð1� alf Þ Qfert
t

Q fert
0

 !qlf0
@

1
A

1=qlf

ðA:7Þ

� Crop production function:
Qc
t ¼ ð1

� gTtÞAtQ
c
0 ac Q lf ;c

t

Xlf ;c
0

 !qc

þ ð1� acÞ Xo;c
t

Xo;c
0

� �qc
0
@

1
A

1
qc

ðA:8Þ

where Tt is the temperature increase relative to base year of
analysis, and At is the agricultural TFP.

� Crop-based food production function:
Ycfood
t ¼hcfoodt Ycfood

0 acfood Xc;cfood
t

Xc;cfood
0

 !qcfood

þð1�acfoodÞ Xo;cfood
t

Xo;cfood
0

 !qcfood0
@

1
A

1=qcfood

ðA:9Þ

where Xc;cfood
t denotes crops used in crop-based food production.
� Pasture land and feed composite production function:
Qlfeed
t ¼Qlfeed

0 alfeed LPt
LP0

 !qlfeed

þð1�alfeedÞ Xc;feed
t

AtX
c;feed
0

 !qlfeed0
@

1
A

1=qlfeed

ðA:10Þ

where Xc;feed
t denotes crops used for livestock feed.

� Livestock production function:
Ql
t ¼ AtQ

l
0 al Q lfeed

t

Qlfeed
0

 !ql

þ ð1� alÞ Xo;l
t

Xo;l
0

 !ql0
@

1
A

1=ql

ðA:11Þ

� Livestock-based food production function:
Ylfood
t ¼ hlfoodt Ylfood

0 alfood Q l
t

Q l
0

 !qlfood

þð1�alfoodÞ Xo;lfood
t

Xo;lfood
0

 !qlfood0
@

1
A

1=qlfood

ðA:12Þ

� Biofuel production function:
Qb
t ¼ Qb

0 ab Xc;b
t

Xc;b
0

 !qb

þ ð1� abÞ Xo;b
t

Xo;b
0

 !qb0
@

1
A

1=qb

ðA:13Þ

where Xc;b
t denotes crops used in biofuel production.

� Energy production function:
Ye
t ¼ het Y

e
0 ae Qb

t

Qb
0

 !qe

þ 1� aeð Þ Qp
t

Qp
0

� �qe
0
@

1
A

1
qe

ðA:14Þ

� Timber production function:
Qtim ¼ Qtim
0 atim LF

LF0

 !qtim

þ ð1� atimÞ Xo;tim

Xo;tim
0

 !qtim0
@

1
A

1=qtim

ðA:15Þ
� Wood production function:
Yw
t ¼ hwt Y

w
0 aw Qtim

t

Qtim
0

 !qw

þ ð1� awÞ Xo;w
t

Xo;w
0

� �qw
0
@

1
A

1=qw

ðA:16Þ

� The other g&s consumption:
Yo
t ¼ Et �

X
i2ffert;c;b;cfood;l;lfood;p;tim;wg

Xo;i
t � It ðA:17Þ

where Et is total annual other g&s, given exogenously, Yo
t is other

g&s consumed, and It is the annual global R&D spending.

� Market clearing condition for extracted fossil fuel:
Xex;p
t þ Xex;fert

t � Qex
t ¼ 0 ðA:18Þ

� Market clearing condition for crops:
Xc;b
t þ Xc;cfood

t þ Xc;feed
t � Qc

t ¼ 0 ðA:19Þ

For simplicity, in this paper we assume that cropland LCt , pasture

land LPt , and forest land LFt have fixed areas over the analyzed time
horizon, and the path of extracted fossil fuels Qex

t , used for liquid
fuels and production of fertilizer in the model, is given exogenously
and follows extraction growth rate in the SSP2 scenario.
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The model is benchmarked to the year 2004 using FAOSTAT
(FAOSTAT, 2015) and GTAP v.7 data bases (Narayanan and
Walmsley, 2008). The AIDADS parameters for this study are esti-
mated on the cross-section of countries recorded in GTAP v.7 data
base following methodology documented in Reimer and Hertel
(2004). To implement AIDADS in the partial equilibrium model,
the estimated parameters must be calibrated for our global repre-
sentative consumer to ensure equality of fitted AIDADS budget
shares and ones observed in the initial year of the analysis. The cal-
ibration procedure follows approach described in Golub (2006).
The elasticity of substitution between land and fertilizer in crop
production is calibrated using econometric analysis reported in
Hertel et al. (1996). The elasticity of substitution between biofuel
and petroleum is calibrated using econometric analysis reported
in Anderson (2012). The elasticity of substitution between pasture
and feed in global livestock sector is calibrated using elasticities
reported in Keeney and Hertel (2005). Other input-output relation-
ships are assumed to occur in (nearly) fixed proportions.

Appendix B. Computing the value of regrets

The regret function is defined as

RðI; kÞ , GðkÞ �max
X

WðI;X; kÞ ðA:20Þ

for a given R&D spending path I and SSP scenario k. That is, for the
kth realized SSP scenario, the regret is difference between (a)
wealth attained when social planner can choose both optimal
R&D spending and resource allocation and (b) wealth attained when
social planner can choose resource allocation, but R&D spending is
given. We then solve the MMR model

min
I

max
k

RðI; kÞ ðA:21Þ

by using the computational method in Cai and Sanstad (2016). As
explained in the main text, we use the present value of the flow of
global consumption loss to quantitatively measure the regrets. Let
c�t;l ¼ Cðy�

t;lÞ be the optimal per capita consumption aggregator of
the maximization problem (6) for scenario l, and let ct;k;l be the per
capita consumption aggregator when we implement the optimal
solution I of (6) for scenario k but the world ends up on scenario l.

To convert the units of consumption aggregators c�t;l and ct;k;l to

real market dollars we divide the aggregators by @C
@yo ðy�

t;lÞ, where yo,

other goods and services, are measured in real market dollars.
Thus, the per capita consumption loss at time t is

c�t;l � ct;k;l
@C
@yo ðy�

t;lÞ
ðA:22Þ

Therefore, the present value of the flow of global consumption loss
(the regret) is

X1
t¼0

c�t;l � ct;k;l

@C
@yo ðy�

t;lÞ
Yt�1

s¼0

ð1þ rsÞ
ðA:23Þ

where rs is the real net interest rate in period s, which is computed
by

rs ¼
U0ðc�s;lÞ @C

@yo ðy�
s;lÞ

dU0ðc�sþ1;lÞ @C
@yo ðy�

sþ1;lÞ
� 1 ðA:24Þ
Appendix C. Decomposing the sources of uncertainty

The model (8) assumes that population, income, and climate
uncertainty are fully correlated within any given SSP scenario.
We conduct decomposition analysis (Fig. 3 in the main text) which
assumes that only one uncertainty, e.g., population uncertainty, is
represented by the SSP scenarios, and the other two components of
SSPs (e.g. income and temperature) are assumed to be certain and
given exogenously by one specific SSP scenario (e.g., SSP2). For
such a decomposition, we change the production functions (5).
For example, with only population uncertainty, the production
functions in the associated MMR problem become
yt;k ¼ FðAt ;Xt ;Pt;k; Et;2; Tt;2Þ where Et;2 and Tt;2 are SSP2 income
and temperature paths, respectively.

Fig. A.1 shows the optimal MMR paths of TFP and R&D spending
for models with only population uncertainty, only income uncer-
tainty, and only climate uncertainty, respectively, where the other
two exogenous paths are chosen to be SSP2. It shows that popula-
tion uncertainty is, individually, the greatest source of R&D uncer-
tainty. Clearly it is important both that R&D has a delayed impact
and that there are multiple sources of uncertainty which are tightly
intertwined.

The decomposition analysis in Fig. 3 shows that the whole of
uncertainty’s impact on R&D is greater than the sum of its
individual parts over the century. This decomposition is conducted
with respect to SSP2 scenario. To check if the result is robust with
respect to the choice of reference scenario, the decomposition is
also conducted with respect to SSP1, SSP3, SSP4 and SSP5
scenarios. Fig. A.2 indicates that the finding is indeed robust,
despite the fact that the contribution, both magnitude and direc-
tion, of each source of the uncertainty, depends on reference sce-
nario. In each case, the combined scenario (simultaneous
uncertainties) shows a higher level of R&D spending over the
21st century than that obtained by simply summing the individual
uncertainties.

Appendix D. Minmax regret model with both SSP and R&D
elasticity uncertainty

In addition to the uncertainties surrounding the SSP scenarios,
there are many other sources of uncertainty influencing the future
path of R&D knowledge capital and associated TFP in agriculture.
Perhaps most central to this question is the responsiveness of
TFP with respect to knowledge capital. Baldos et al. (2015) esti-
mate this elasticity to be 0.3 – the central value used in our paper
– with a standard deviation of 0.1. With this in mind, we introduce
this added source of uncertainty into MMR dynamic optimization
as follows. We assume that /1 ranges from 0.2 to 0.4, and has
potential discretized values /1;j for j ¼ 1; . . . ;n (we choose n ¼ 3
with /1;1 ¼ 0:2;/1;2 ¼ 0:3 and /1;3 ¼ 0:4 to represent low, medium
and high R&D elasticity respectively). For each SSP scenario k and
value /1;j, the production functions become

yt;k;j ¼ FðAt;j;Xt ;Pt;k; Et;k; Tt;kÞ ðA:25Þ
with

lnðAt;jÞ ¼ /0 þ /1;j lnðStÞ
The total welfare associated with policy paths ðI;XÞ becomes

WðI;X; k; jÞ ,
X1
t¼0

dtUðyt;k;jÞPt;k

We then solve

Gðk; jÞ , max
I;X

WðI;X; k; jÞ ðA:26Þ

and the MMR model

min
I

max
k;j

RðI; k; jÞ ðA:27Þ

where the regret function R is defined as



Fig. A.1. Optimal Paths of R&D and TFP spending under population, income, and climate uncertainties, considered one at a time.
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RðI; k; jÞ , Gðk; jÞ �max
X

WðI;X; k; jÞ ðA:28Þ

for a given R&D spending path I, SSP scenario k and elasticity value
/1;j.

When we solve the MMRmodel (A.27), we find that the optimal
path for R&D spending is not very different from that reported in
the paper (see Fig. A.3 for this comparison). However, with this
added source of uncertainty, the maximum regrets are now much
larger. For example, when planning for SSP5 (low population
growth – recall Fig. 1 from the text), in the face of a low TFP elas-
ticity (0.2), sizable R&D investment results in large regrets
($456 billion) if SSP3 (fragmentation scenario leading to high pop-
ulation growth) and a high TFP elasticity comprise the true realiza-
tion. This high level of regret arises from underinvesting in R&D
(investments are less productive with the low elasticity) during
the early part of the century, followed by a flattening of real expen-
ditures after 2050 (see Fig. 2), even as the optimal path of R&D
should have been rising strongly. The smallest regret across all
SSPs is for SSP2/medium TFP elasticity, but even this reaches
$74 billion in the face of a SSP5/low elasticity realization.



Fig. A.2. Additional R&D spending of MMR relative to SSP1, SSP3, SSP4, and SSP5.

Fig. A.3. R&D spending of MMR with SSP and R&D Elasticity Uncertainty.
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