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For studying impacts and policy issues related to climate change, it is often critical

to be able to forecast the future climate for a range of forcing scenarios. Complex cli-

mate models can be used to study climate change, but they are expensive to run, and

thus, can only be used to investigate a limited number of scenarios. For some climate

summaries, it is possible to develop a statistical emulator of the climate model that

accurately and quickly reproduces the climate model output. Training such an emu-

lator based on a small number of model runs can be challenging, especially when

emulating at a fine spatial resolution. This work considers developing such an emu-

lator for a specific climate model, CCSM3, as a function of the past trajectory of

atmospheric CO2 concentrations. We propose a new approach to fitting an emulator

for annual temperature at the pixel level of the climate model by combining a spa-

tially varying coefficient model and an infinite distributed lag model. The approach

can capture the annual mean temperature at grid-cell level of climate model output

in transient climates based on model runs from just a single CO2 trajectory. We apply

the approach to annual temperature emulation over North America and Africa, and

show that the resulting emulator predicts annual temperature quite well and that the

emulator can be fit in a computationally efficient manner. We show that the emulator

outperforms procedures that do not take account of the spatial structure.
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1 INTRODUCTION

There is a wide consensus among the scientific community

that climate is changing and will almost certainly produce

detrimental impacts for human society (IPCC AR5; Stocker

et al., 2014). General circulation models (GCMs) are numer-

ical models of the Earth’s climate system that can produce

climate predictions based on the radiative effects of CO2

and other anthropogenic forcing agents. These models are

important tools in the study of climate variability and climate

change. GCM output can be used to evaluate the impacts of

climate change and support possible policies to reduce them.

However, the computational demands of GCMs limit their

use in climate damage estimation, cost–benefit evaluation,

and policy decisions, which require repeated iterations of cli-

mate projections in response to different forcing trajectories.

Statistical models allow us to fit climate model output under

some scenarios and emulate behavior of the climate model

under a new forcing scenario in much less time (Caldeira &

Myhrvold, 2012; Castruccio et al., 2014). Our work focuses

on emulating annual mean temperature at Earth’s surface for

different trajectories of atmospheric CO2 concentrations. The

goal is to build simple statistical models to emulate climate

projections at each grid cell (without aggregation) for a wide

range of CO2 trajectories based on a small set of precomputed

climate model runs.

Statistical analysis of climate model output has focused on

annual or seasonal summaries aggregated over global, hemi-

spheric, or continental spatial scales and possibly analyzed

as time series or with spatial statistical models (e.g., Tebaldi,

Smith, Nychkam, & Mearns, 2005; Furrer, Sain, Nychka, &

Meehl, 2007; Berliner & Kim, 2008; Smith, Tebaldi, Nychka,

& Mearns, 2009; Tebaldi & Sanso, 2009; Buser, Künsch,

& Weber, 2010; Kaufman & Sain, 2010; Sain, Nychka, &

Mearns, 2011, etc.). Greasby and Sain (2011) proposed a

Bayesian hierarchical spatial model along with an intrin-

sic Markov random field for climate emulation. The model

includes spatial effects for some regression parameters but
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does not include an effect of CO2. Castruccio and Stein (2013)

introduced a spectral approach to modeling the space-time

variations in annual temperatures at the pixel level, but this

approach still requires a separate emulator of mean tempera-

tures for a changing climate. Indeed, they essentially use the

mean emulator in Castruccio et al. (2014), which shows how a

distributed lag model (Judge, Griffiths, Hill, & Lee, 1980) can

emulate mean temperature trajectories at the regional level

for arbitrary CO2 scenarios based on a small set of precom-

puted runs from a GCM. Two key insights in Castruccio et al.

(2014) allowed accurate emulation of annual temperatures

based on as few as one or two model runs. First, annual mean

temperatures at any one time are a function of the past trajec-

tory of forcings and not the specific year under consideration,

so that one does not need a separate emulator for different

years and thus even a single model run of many years pro-

vides substantial information about this function. Second, our

understanding of the relationship between CO2 and temper-

ature implies that mean temperatures in a given year should

be nearly linear in the past trajectory of the logarithm of

atmospheric CO2 concentrations, leading to the infinite dis-

tributed lag model (Judge et al., 1980). Furthermore, there

are both short- and long-term effects of CO2 on temperature

that suggest a specific form for the distributed lag coeffi-

cients including only four unknown parameters. Although this

approach worked well at the regional level, when applied at

the pixel level, the estimated parameters of the distributed

lag model suffer from substantial statistical variation. The

main contribution of this work is to improve the estimation

of the coefficients of the distributed lag model at the pixel

level by including spatial dependence in them and including

spatial–temporal structure in the error term.

The flexibility and interpretability of varying coefficient

models make them important tools for exploring dynamic

patterns in many scientific areas, such as economics, pol-

itics, epidemiology, medical science, and ecology (Hastie

& Tibshirani, 1993; Fan & Zhang, 2008). Spatially vary-

ing coefficient models (Gelfand, Kim, Sirmans, & Banerjee,

2003; Gamerman, Moreira, & Rue, 2003; Assunċao, 2003)

are natural extensions of varying coefficient models that allow

one to exploit the expected spatial structure in relationships

between spatial variables. The infinite distributed lag model

is widely used in statistics and econometrics when the effect

of a change in an independent variable is assumed perpet-

ual, and diminishing over time (Judge et al., 1980; Koyck,

1954). In order to emulate annual mean temperature at the

pixel level, we introduce a spatial-dependent model (SDM),

a statistical model combining a spatially varying coefficient

model and an infinite distributed lag model. This approach

distinguishes between short-term and long-term effects of

CO2 at each grid point, where nearby grid points share similar

effects based on the CO2 trajectory, as well as characterizing

spatial–temporal error.

The remainder of this paper discusses the structure and

performance of the emulator. Section 2 describes the precom-

puted climate model output data. Section 3 provides some

statistical background on distributed lag models and spatially

varying coefficient models. Section 4 describes our model for

climate model output, and Section 5 presents the likelihood

approach to estimating parameters and the numerical val-

ues of the estimates. Section 6 describes the performance of

our emulator and compares the results with other emulators,

including models without any spatial dependence. Section 7

discusses possible extensions and improvements to the emu-

lator described in this work. The Appendix explains why

estimates of the regression coefficients in the distributed lag

model should be very nearly unbiased, which is an assumption

underlying one of our approaches to evaluating the effective-

ness of the spatially varying coefficient models.

2 DATASETS FOR EMULATION

To investigate climate model emulation, we use a set of cli-

mate model runs based on five different forcing scenarios

(Castruccio et al., 2014). The GCM runs differ in their trajec-

tories of future global mean atmospheric CO2 concentration

and have different initial conditions but are performed with

the same model and same representation of model physics

(Castruccio et al., 2014). Simulations were performed with

the Community Climate System Model, version 3 (CCSM3,

Yeager, Shields, Large, & Hack, 2006; Collins et al., 2006),

at a relatively modest T31 atmospheric resolution (≈3.75◦

× 3.75◦) and nominally 3◦ ocean resolution, a configuration

that made it possible to run multiple realizations of a wide

range of multicentury scenarios. In order to focus on the effect

of CO2, all other greenhouse gases and aerosol concentrations

were held fixed at their preindustrial values in all runs. The

five different scenarios of GCM runs used in this work include

three scenarios with a gradual rise followed by stabilization of

CO2 and two others with abrupt changes. We denote the five

scenarios as “hi” (high), “med” (moderate), “low”, “drop,”

and “jump” (Figure 1). The scenarios were chosen to explore

climate emulation across a wide range of types of CO2 evo-

lution. In particular, although physically unrealistic, the drop

FIGURE 1 Scenarios of global mean atmospheric CO2 concentration used

for training and testing. The five different scenarios are labeled as (1) low,

(2) med, (3) hi, (4) jump, and (5) drop. All scenarios start at year 1870. Hi,
med, low, and drop end at 2399 and jump ends at year 2199. The atmospheric

CO2 concentrations for the five scenarios are the same for 1870–2009
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and jump scenarios provide important information for distin-

guishing between short- and long-term effects of changing

atmospheric CO2 concentration. In all scenarios, the same

historical values are used for atmospheric CO2 concentra-

tions in the years of 1870–2009, and subsequently diverge into

five different trajectories for 190–390years (end years range

from 2199 to 2399 and the total number of model years range

from 330 to 530). We have five realizations under each sce-

nario with different initial conditions, which were obtained

using restart files from years 410, 420, 430, 440, and 450 of

the National Center for Atmospheric Research preindustrial

control run b30.048 (Collins et al., 2006; Castruccio et al.,

2014). We treat each model run, including five realizations of

each scenario, as statistically independent, which is reason-

able given the extreme sensitivity to initial conditions in GCM

runs (Castruccio et al., 2014).

This paper focuses on emulating annual mean temperature

at grid cell level by understanding the relationship between

local annual average temperature and the past trajectory of

atmospheric CO2 concentrations. We train emulators based

on various subsets of GCM runs and estimate the parame-

ters of the SDM using the methods described in the following

sections. The resulting emulators are then used to predict

annual mean temperature at particular locations under arbi-

trary CO2 scenarios. We mainly use the five realizations of a

single scenario as the training set and then test the emulator

on all five scenarios, but we also consider the performance

of the emulator when fewer than five realizations are used.

Compared with oceans, climates over continents have differ-

ent responses to CO2 change and are of greater interest for

impact assessment, so we consider the climate model out-

put for the US and Canada (hereafter North America, NA)

and Africa (AF). These two different continents have very

different latitude ranges and allow us to show the broad valid-

ity of our approach. There are 198 pixels in NA and 184

pixels in AF (out of 48 × 96 CCSM3 grid cells for T31

resolution, see Figure 2). Our collection of runs then consists

FIGURE 2 The locations used for emulation: 198 pixels in North America

(red) and 184 in Africa (blue). Each location shown represents a grid cell at

T31 resolution (≈3.75◦ × 3.75◦). Emulation is performed on annual

average temperature data in these grid cells. The symbols denote specific

pixels referred to in other figures (“×”: Figure 6; “+” : Figure 8)

of about 100,000 spatial–temporal annual temperatures in

each scenario run and each continent.

3 STATISTICAL ASSUMPTIONS

Koyck (1954) and Judge et al. (1980) introduced infinite

distributed lag models, which are of the form

Y(t) =
∞∑

j=0

wjX(t − j) + 𝜖(t), (1)

where t denotes time, Y(t) is a variable that depends on

lagged values of the independent variable X(t), the wj’s are

lag weights, and the 𝜖(t) is random error. Thus, the current

value of Y(t) depends on all the past values of X. Changes

in atmospheric CO2 concentrations not only affect temper-

ature by the immediate change in the radiative properties

of the atmosphere but also have long-term effects due to

the slow warming of the oceans. We use the infinite dis-

tributed lag model to account for both these short- and

long-term effects of changing atmospheric CO2 concentra-

tions on annual average temperature. As in Castruccio et al.

(2014), we assume the wj’s in (1) for j > 1 decay exponen-

tially to model the long-term CO2 effect. Thus, our model has

one nonlinear parameter in it to account for the rate of this

exponential decay.

A simple way to fit this model at the pixel level would

be to do the estimation separately at every pixel of interest,

ignoring any spatial information. Another extreme would be

to assume the parameters of the model do not vary across pix-

els within some region. A good compromise between these

two extremes is to use a version of the spatially varying

coefficients model described in Gelfand et al. (2003) for

spatiotemporal data, which has the form

Y(s, t) =
p∑

i=1

Xi(s, t)𝛽i(s) + 𝜖(s, t), (2)

where s indicates spatial location, t indicates time, Y(s, t)
is the outcome of interest (here, temperature), X1(s, t),· · ·,
Xp(s, t) are covariates (here, functions of the past CO2 trajec-

tory and the exponential decay parameter), 𝛽1(s),· · ·,𝛽p(s) are

unknown random coefficients from some multivariate spatial

process model, and 𝜖(s, t) are random errors from some spa-

tiotemporal process model. Note specifically that we do not

let 𝛽 i(s) depend on t, which is a consequence of the distributed

lag model.

We will assume that 𝛽1(s),· · ·,𝛽p(s) and 𝜖(s, t) are indepen-

dent Gaussian processes. Assuming that 𝜖(s, t) is Gaussian is

perhaps reasonable because we are considering annual aver-

ages of temperature (Castruccio & Stein, 2013), but assuming

the 𝛽 i(s)’s are Gaussian and independent is for convenience.

We briefly review some material for Gaussian pro-

cesses. Gaussian processes are stationary if the mean is a

constant and covariance only depends on the separation at
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two points. Suppose Z(x) is a stationary Gaussian process

on R2, has mean 𝜇 = E[Z(x)], and covariance function

K(h) = E[(Z(x + h) − 𝜇)(Z(x) − 𝜇)]. A class of covariance

functions widely used in geoscience and environmental stud-

ies is the Matérn covariance family (Fuentes, 2001; Nychka,

Wikle, & Royle, 2002), which are specified by parameters

(𝜎2,𝛼,𝜈) (Stein, 1999, see supplementary material for more

mathematical detail). Here, 𝜎2 > 0 is a scale parameter, and

𝛼 > 0 is a spatial scale parameter, whose inverse, 1/𝛼, is some-

times referred to as a correlation length (Gneiting et al., 2012).

The parameter 𝜈 measures the smoothness of Z: Z(x) is m
times mean square differentiable if and only if 𝜈 > m. If the

smoothness parameter 𝜈 equals an integer plus
1

2
, the Matérn

function reduces to the product of an exponential function and

a polynomial (Stein, 1999). For example, if the smoothness

parameter 𝜈 = 1/2, the corresponding Matérn function is

K(x) = 𝜎2𝛼−1e−𝛼|x|, (3)

which is a exponential covariance function and if 𝜈 = 3/2, the

corresponding Matérn function is

K(x) = 𝜎2𝛼−3e−𝛼|x|(1 + 𝛼|x|). (4)

Model (4) is smoother than Model (3). We only use these two

Matérn functions with 𝜈 = 1/2 and 3/2 throughout this paper.

4 STATISTICAL MODELING
FOR CLIMATE MODEL OUTPUT

Let T(s, t) be the annual average temperature at location s
and year t, s∈D, where D is some region of interest (here NA

or AF). Historical research suggests that equilibrium global

mean temperature change is proportional to log[CO2r](t)
(Manabe & Wetherald, 1967; Forster et al., 2007), where

log[CO2r](t) is the logarithm of the ratio between atmo-

spheric CO2 concentration in year t and its preindustrial

value. Exploratory analyses show that the annual average

temperature at nearby grid points share similar short-term

and long-term effects from the change of atmospheric CO2

concentration. To emulate the annual mean temperature

pixel-wise, we propose a model that captures this dependence

of nearby grid points and past trajectory of CO2 via com-

bining a spatially varying coefficient model (2) and infinite

distributed lag model (1):

T(s, t) = 𝛽0,s + 𝛽1(s)S(t) + 𝛽2(s)L(t) + 𝜖(s, t), (5)

where

S(t) = 1

2
{log[CO2r](t) + log[CO2r](t − 1)}

is the short-term CO2 covariate at year t and

L(t) =
∞∑

i=2

wilog[CO2r](t − i)

is the long-term CO2 covariate at year t, with wi = 𝜌i − 2(1− 𝜌)

decaying exponentially (and normalized to sum to 1) (see

further discussion in supplementary material). The param-

eter 𝜌 captures the decreasing impact of CO2 from further

in the past on current temperatures (we set the atmospheric

CO2 concentration level to equal the preindustrial level for

years before the start of the model run). Here, 𝛽1(s) and 𝛽2(s),

which are modeled as two independent spatially stationary

Gaussian processes, give the values for the short-term and

long-term effect of CO2. These forms for the short-term and

long-term effects are the same as in Castruccio et al. (2014).

We assume 𝛽1(s) and 𝛽2(s) have mean 𝜇1, 𝜇2, and covari-

ance function K1, K2 correspondingly, where K1 and K2 are

Matérn covariance function with parameters (𝜎2
1
, 𝛼1, 𝜈1) and

(𝜎2
2
, 𝛼2, 𝜈2) and 𝜈1 = 𝜈2 = 1.5. This choice corresponds to a

differentiable process and reflects our expectation that these

parameters should vary smoothly in space. For the intercepts,

we find that 𝛽0,s can be estimated well without taking account

of spatial structure, so treat them as fixed effects. We model

the spatial–temporal error term 𝜖(s, t) by

𝜖(s, t) = 𝜙𝜖(s, t − 1) + v(s, t), (6)

where v(s,t) is white in time and colored in space, so that v(s,t)
is independent from year to year but correlated across loca-

tions. For any given year t, v(s, t) is assumed to be a stationary

Gaussian process with mean 0 and covariance Kv, where Kv
is Matérn covariance function with parameters (𝜎2

v , 𝛼v, 𝜈v) and

𝜈v = 0.5 (see supplementary materials for further discussion

on modeling the error term). We considered more complex

models for 𝜖(s, t) (for example, allowing 𝜖(s, t) to depend on

𝜖(s′
, t − 1) for s′

a neighbor to s), but (6) performs almost the

best in the sense of mean squared error of the emulator, so we

present results for this simple model.

SDM (5) distinguishes short-term and long-term effects

of changes in CO2. To demonstrate how the model changes

with the decay rate 𝜌, we plot the short-term covariate S(t)
and long-term covariate L(t) as functions of t for different

𝜌 in SDM (5) under the low and drop scenarios (Figure 3).

The high multicollinearity between short-term and long-term

covariates when the decay rate 𝜌 is less than 0.95, especially

for the low scenario, makes the model difficult to fit. With this

simple model, we need to find a procedure that can estimate

𝜌 accurately and stably at all grid points. We tried different

models for the decay rate 𝜌 including modeling 𝜌 as a function

of latitude. The results show no benefit compared with fix-

ing 𝜌 throughout a continent. Thus, we assume 𝜌 is the same

throughout each continent. We set 𝜌 = e𝜌0∕(1+ e𝜌0 ) and fit 𝜌0

instead of 𝜌 to avoid problems with estimating the standard

error of a parameter near its boundary value.

In order to explore the performance of adding spatial struc-

ture in the short-term and long-term effect and fixing 𝜌 for

each continent, we compare models with and without spatial
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FIGURE 3 (a), (b) show the covariates short-term S(t) and long-term L(t) in SDM (5) for different values of the decay rate 𝜌 under the drop and low
scenarios. The black dashed line indicates the short-term S(t). Red, orange, purple solid lines represent long-term L(t) for different values of 𝜌. When 𝜌 is

smaller than 0.95, the collinearity between the short-term and long-term covariates is very strong, especially for the low scenario

TABLE 1 Different models for comparison

Model Description

Model V No spatial structure in coefficients with varying rate parameter 𝜌.

Model F No spatial structure in coefficients with fixed rate parameter 𝜌.

Model SV Spatial structure in coefficients with varying rate parameter 𝜌.

Model SF Spatial structure in coefficients with fixed rate parameter 𝜌.

structure in the coefficients and fixed or varying 𝜌 in

Section 6. We denote these models as in Table 1 (the math-

ematical definitions of these models are in the supplemen-

tary material). Note that Model SF is just another name for

SDM (5).

5 PARAMETER ESTIMATION

To assess the emulator, we need to estimate the parameters in

SDM (5) first. Because each model run (except for the shorter

jump runs) has about 100,000 observations, none of which

are independent, brute force calculations of the likelihood

are not feasible. The nonlinear decay rate parameter 𝜌 fur-

ther complicates the estimation. Therefore, we use a two-stage

maximum likelihood method and the mixed model equation

(Robinson, 1991) to estimate the parameters and coefficients

(see supplementary materials for computational details). The

computational effort to fit one of these emulators (one sce-

nario, five realizations) takes about 25min on one Linux PC

(16-core CPU: Intel(R) Xeon(R) E5-2670 2.60GHz) using

the R language. Once the emulator parameters are estimated,

computing the emulated mean temperatures for a new sce-

nario is effectively instantaneous.

5.1 Estimated coefficients based on five realizations
of single scenario

To emphasize the point that we do not need many scenarios

to train the emulator, we only present training sets with a sin-

gle scenario. We report results when all five realizations of

a scenario are included in the training set in this subsection

in order to get accurate parameter estimates, which makes it

easier to see patterns in these estimates across scenarios (see

Table 2). In the next subsection, we consider emulation using

fewer than five realizations.

If our emulator provided a completely accurate statistical

description of annual average temperatures, we should not

see any consistent differences in parameter estimates obtained

using different scenarios. Indeed, the estimated parameters

in all scenarios are fairly consistent (see Table 2). However,

there are some notable patterns in the parameter estimates that

are consistent across both NA and AF. For example, the esti-

mated rate parameter 𝜌̂ is smaller in the drop scenario than

other scenarios in both continents, which means the emulated

annual average temperature is less effected by the distant past

when fitted using this scenario. Furthermore, for both conti-

nents, 𝜎̂2
1

is smallest for the med and low scenarios, and 𝜎̂2
2

is

largest for these scenarios. That is, the scenarios with the most

gradual changes in atmospheric CO2 concentrations have the

smallest spatial variability in the short-term covariate and the

largest spatial variability in the long-term covariate.

There are some systematic differences in parameter values

between NA and AF. The autoregressive parameter 𝜙̂, while

small over both continents, is distinctly larger over NA for all

five scenarios. All the estimated spatial scale parameters 𝛼̂v,

𝛼̂1, 𝛼̂2, whose reciprocals are correlation lengths (Gneiting,

Kleiber, & Schlather, 2012), are larger in AF than NA. This

implies the short- and long-term effects of CO2 and the error

term have stronger correlation in AF. AF may have stronger

correlation in spatial parameters because the temperature in

AF has less spatial variation than the temperature in NA.

NA spans from lower-mid latitudes to the lower Arctic and

has huge temperature gradients. AF is in the tropics and sub-

tropics and has a much smaller temperature gradient. The

estimated short-term, long-term, and total mean CO2 effects
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TABLE 2 Estimates and standard errors of parameters in the spatial-dependent model (5) for five scenarios and two continents

Estimation (standard error, confidence interval)
Parameters Hi Med Low Drop Jump

North America

𝜙 0.0778 (0.0014) 0.0774 (0.0014) 0.0815 (0.0014) 0.0770 (0.0014) 0.0730 (0.0018)

𝜎2
v 0.1666 (0.0003) 0.1677 (0.0003) 0.1686 (0.0003) 0.1708 (0.0003) 0.1684 (0.0004)

𝛼v (6.21 × 10 − 3/km) 0.1186 (0.0024) 0.1191 (0.0024) 0.1152 (0.0023) 0.1148 (0.0023) 0.1158 (0.0030)

𝜎2
1

1.3269 (0.1068) 1.0002 (0.0908) 0.8205 (0.0945) 1.2960 (0.0868) 1.3149 (0.0894)

𝛼1 (6.21 × 10 − 3/km) 0.7461 (0.1094) 0.4907 (0.0964) 0.5013 (0.0960) 0.7609 (0.1031) 0.6773 (0.0992)

𝜎2
2

0.8241 (0.0991) 0.9907 (0.1105) 1.0576 (0.1230) 0.5493 (0.0459) 0.4494 (0.0496)

𝛼2 (6.21 × 10 − 3/km) 0.9069 (0.1137) 0.6130 (0.1113) 0.8912 (0.1229) 0.8352 (0.0934) 0.8628 (0.1107)

𝜌0 4.2444 (0.0956) 4.1671 (0.0879) 4.3367 (0.1147) 3.7331 (0.0502) 4.2149 (0.1644)

𝜌 (e𝜌0∕(1 + e𝜌0 )) 0.9859 0.9847 0.9871 0.9766 0.9854

CI for 𝜌 (0.9830, 0.9882) (0.9819, 0.9871) (0.9839, 0.9897) (0.9743, 0.9788) (0.9800, 0.9894)

Africa

𝜙 0.0521 (0.0014) 0.0545 (0.0014) 0.0570 (0.0014) 0.0558 (0.0014) 0.0472 (0.0018)

𝜎2
v 0.1565 (0.0003) 0.1553 (0.0003) 0.1555 (0.0003) 0.1509 (0.0003) 0.1549 (0.0004)

𝛼v (6.21 × 10 − 3/km) 0.7454 (0.0069) 0.7339 (0.0068) 0.7350 (0.0068) 0.7161 (0.0068) 0.7303 (0.0087)

𝜎2
1

1.0589 (0.1028) 0.8568 (0.0807) 0.4569 (0.1218) 1.4269 (0.1043) 1.1852 (0.1075)

𝛼1 (6.21 × 10 − 3/km) 1.9043 (0.1580) 1.6540 (0.1441) 2.4656 (0.6685) 2.1270 (0.1445) 2.0523 (0.1603)

𝜎2
2

1.3059 (0.1259) 1.7270 (0.1615) 1.8219 (0.1635) 0.6578 (0.0715) 0.9682 (0.1079)

𝛼2 (6.21 × 10 − 3/km) 2.7700 (0.2154) 2.9399 (0.2183) 2.1426 (0.1931) 2.7263 (0.2178) 2.5657 (0.2192)

𝜌0 4.0039 (0.0570) 4.3931 (0.0677) 4.0289 (0.0761) 2.7660 (0.0561) 3.3110 (0.0860)

𝜌 (e𝜌0∕(1 + e𝜌0 )) 0.9821 0.9878 0.9825 0.9408 0.9648

CI for 𝜌 (0.9800, 0.9839) (0.9861,0.9893) (0.9798, 0.9849) (0.9344, 0.9466) (0.9586, 0.9701)

Note. Confidence intervals for 𝜌 are based on transforming asymptotic confidence interval for 𝜌0. Estimates for each scenario are based on

five realizations (see the supplementary material for computational details).

FIGURE 4 The log ratios of estimated short-term and long-term coefficients log(𝛽1∕𝛽2) of a spatial-dependent model (5) in North America (NA) and Africa

(AF) for different scenarios. Estimates are based on five realizations of a single scenario. Red indicates the estimated short-term effect is stronger than the

long-term effect and blue means weaker. Upper row gives log ratios of coefficients in NA and bottom row gives log ratios of coefficients in AF

also have some significant differences between the two con-

tinents and five scenarios (see supplementary materials for

detailed discussion).

The log ratios of estimated coefficients in NA and AF,

log(𝛽1∕𝛽2) (Figure 4) show how the short-term and long-term

effects of atmospheric CO2 concentration vary smoothly with

spatial locations. The log ratios of effects in northwest NA

are smaller than other regions in NA (Figure 4(a)–(e)), which

means the CO2 in the two most recent years has less influence

in northwest NA than other locations compared with CO2

in earlier years. However, the short-term effects are stronger

than long-term effects in southern NA. In AF, the log ratios

of estimated coefficients are all positive and fairly evenly dis-

tributed in all five scenarios (Figure 4(f)–(j)). The log ratios

are smaller in the low and drop scenarios than other scenarios

in AF, but are still almost all positive. Meanwhile, the esti-

mated coefficients (see supplementary material) show clearly

different patterns in NA and AF. Thus, it would be a mistake

to pool model output across the two continents to estimate the

parameters of the emulator.



402 BAO ET AL.

5.2 Estimated coefficients based on fewer than five
realization of one scenario

This subsection demonstrates the advantages of using spatial

models for estimating the regression coefficients 𝛽1(s) and

𝛽2(s). We focus on what happens when one has only a single

model run in order to make the advantages of using spatial

information clearest and because we then have a model-free

way of assessing this advantage. Figure 5 shows boxplots of

empirical standard deviations for NA across pixels of the esti-

mated coefficients in Model V and F, which do not account for

spatial structure, and Model SV and SF, which do. The main

comparisons of interest are between V and SV and between

F and SF, because it is not clear how to compare estimates of

especially 𝛽2(s) when one model has spatially varying 𝜌 and

the other a single 𝜌 for the whole continent. Whether one con-

siders models with spatially varying or a single 𝜌, the spatial

models generally show much smaller variability, especially

for the more physically realistic scenarios low, med, and hi.
(The same plot for AF is shown in supplementary material.)

These comparisons, while stark, are possibly misleading

because they take no account of any biases in the estimates

based on spatial methods. We can take advantage of our multi-

ple realizations of each scenario to obtain effectively unbiased

estimates of differences in mean squared errors for estimates

of regression coefficients. For k = 1,2 and scenario i, define

𝛽
(i)
k (s) to be the limiting value of 𝛽k(s) we would obtain using

a pixel-wise fit as the number of realizations tends to ∞. If the

distributed lag model were correct, 𝛽
(i)
k (s) would be the same

for every scenario i, but even when the model is not correct,

we can still think of 𝛽
(i)
k (s), k = 1,2 as the “best-fitting” param-

eter values for that scenario. Let 𝛽
(i)
j,m,k(s) denote the estimate

of 𝛽
(i)
k (s) using scenario i, run j (one realization), and model m

at location s. Let 𝛽
(i)
−j,m,k(s) denote the estimate using scenario

i, all four runs except j, and model m at location s. For each

scenario i and region S (here NA or AF), define, for k = 1, 2,

D(i)
k (m,m′) = 1

5NS

∑
s∈S

5∑
j=1

(
𝛽
(k)
j,m,k(s) − 𝛽

(i)
−j,m′,k(s)

)2

, (7)

as a criterion of the difference between using one run of

model m and four runs of m′
, where NS is the number of pix-

els in region S. If 𝛽
(i)
−1,m′,k(s) is unbiased for 𝛽

(i)
k , then under

our assumption that the different realizations under a single

scenario are iid realizations of a stochastic process,

E
{

D(i)
k (m,m′)

}
= 1

NS

∑
s∈S

E
{(

𝛽
(i)
1,m,k(s) − 𝛽

(i)
k (s)

)

−
(
𝛽
(i)
−1,m′,k(s) − 𝛽

(i)
k (s)

)}2

= 1

NS

∑
s∈S

E
(
𝛽
(i)
1,m,k(s) − 𝛽

(i)
k (s)

)2

+ 1

NS

∑
s∈S

E
(
𝛽
(i)
−1,m′,k(s) − 𝛽

(i)
k (s)

)2

,

because the cross-term cancels because of the independence

across runs and the unbiasedness of 𝛽
(i)
−1,m′,k(s). It follows that

E
{

D(i)
k (m,m′) − D(i)

k (m′,m′)
}

= 1

NS

∑
s∈S

E
(
𝛽
(i)
1,m,k(s) − 𝛽

(i)
k (s)

)2

− 1

NS

∑
s∈S

E
(
𝛽
(i)
1,m′,k(s) − 𝛽

(i)
k (s)

)2

.

(8)

FIGURE 5 Boxplots of pixel-wise sample standard deviations of estimates of 𝛽1 and 𝛽2 in North America. The estimates are based on using a single

realization of the indicated scenario, and the standard deviations are sample standard deviations over the five realizations of that scenario. Results shown for

four statistical models and all five scenarios. Both 𝛽1 and 𝛽2 are more variable in models without spatial structure (V and F) than models taking account of

spatial structure (SV and SF), sometimes dramatically so
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TABLE 3 For North America, values of D(i)
k (m,m′), defined in (7)

D(i)
1
(m,m′) D(i)

2
(m,m′)

m (1 runs) m′ (4 runs) Hi Med Low Drop Jump Hi Med Low Drop Jump

Model V Model V 13.76 79.06 446.31 1.08 2.95 257.80 2964.05 4684.23 0.49 1816.05

Model SV Model V 3.02 5.67 91.35 0.83 0.70 27.09 1033.78 2742.87 0.63 30.40

Model F Model F 2.31 1.03 301.85 0.52 0.52 1.73 1391.36 5684.90 0.31 0.48

Model SF Model F 0.34 1.03 1.44 0.58 1.01 0.27 0.63 2111.16 0.16 0.46

Note. As argued in the Appendix, D(i)
k (m,m′) − D(i)

k (m′,m′) should be a nearly unbiased estimator of the average (across pixels) mean square error of 𝛽
(i)
k (s). We see

that for the three scenarios without sudden changes in CO2 levels, the spatial methods SV and SF are far superior to their nonspatial counterparts, V and F.

Thus, D(i)
k (m,m′) −D(i)

k (m′,m′) is an unbiased estimate of the

difference in mean square errors for the regression coeffi-

cients between methods m and m′
. In the Appendix, we argue

that if model m′
is a model with no spatial component, then

𝛽
(i)
−1,m′,k(s) should be very nearly unbiased for 𝛽

(i)
k under the

iid assumption for runs under a single scenario.

Table 3 shows that, if model m is SV or SF and model

m′
is model V or F, respectively, the values of D(i)

k (m,m′) −
D(i)

k (m′,m′) are always non-negative, and sometimes hugely

so, for the three scenarios hi, med, and low without sudden

jumps. For the drop and jump scenarios, the results are mixed.

Scenarios with sudden jumps in CO2 are physically unrealistic

and are rarely available for most GCMs, so the main message

here is that if there is only a single model run available, there

can be a large advantage in using the spatial methods, even if

one assumes 𝜌 is constant across a continent.

6 EMULATION PERFORMANCE

Our main objective in this work is to emulate annual mean

temperature accurately for a wide range of CO2 trajectories,

which requires distinguishing between short- and long-term

effects. Emulating the drop scenario provides the most severe

test for making this distinction, because the CO2 concentra-

tion of the drop scenario has the largest range, from 289 to

about 1100 ppm. Training the emulator based on the low
scenario makes the test particularly difficult, because atmo-

spheric CO2 concentrations change the most slowly in this

scenario. The large variances of estimated coefficients in

Figure 5 and Table 3 also give a glimpse of the difficulty

of generating an emulator based on the low scenario. This

section mostly shows the results for emulators of the drop
and the jump scenario trained with five realizations of the

low or the drop scenario, although we also considered other

combinations of training and test scenarios.

6.1 Performance of SDM

Figure 6 shows the emulated annual mean temperatures for

the drop scenario at two locations (see “×” in Figure 2 for

the locations) based on emulators trained on either drop or

low scenario model runs using SDM (5). The emulated tem-

perature of the drop scenario based on the drop scenario

FIGURE 6 Emulated temperatures of the drop scenario using the spatial-dependent model (5) based on five realizations of the drop or low scenarios in

North America (NA) and Africa (AF). Gray lines present the five CCSM3 realizations for the chosen scenario, black lines are emulated annual mean

temperature, blue dashed lines are (pointwise) 95% confidence intervals for the emulator (difficult to see because intervals are so narrow), and red dashed

lines denote 95% prediction bands for the emulator (see supplementary material for computational details). Plots (a) and (b) are for a pixel in NA, plots (c)

and (d) are for a pixel in AF (the pixels marked by “×” in Figure 2). Plots (a) and (c) show results for an emulator trained on five realizations of the drop
scenario and (b) and (d) show similar results for an emulator trained on the low scenario
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FIGURE 7 Values of the “emulation optimality” index I1 under the spatial-dependent model (5) in North America. Each plot uses the five realizations of the

column-labeled scenario to emulate the row-labeled scenario. Red points indicate that I1 values are larger than 1 and deeper red means worse emulation

performance. Values of I1 near 1 indicate an excellent fit and I1 values less than 1 are because of stochastic variation. All I1’s are less than 1.22, which means

the emulator performs well in every scenario picked. Numbers in lower left corner of each plot give the mean of I1 in each case. All indices have been

computed between the year 2010 and the farthest time point available from the model run

(a) (b)

(c)

1900 2000 2100 2200 2300 2400 1900 1950 2000 2050 2100 2150 2200

(d)

Year

FIGURE 8 Emulator at individual pixels for the drop and the jump scenarios generated by four models based on the low scenario in North America (NA)

((a),(b)) and Africa (AF) ((c),(d)) (see locations marked “+” in Figure 2). The gray lines are average temperatures of five realizations of the drop and jump
scenarios. Emulator for drop scenario generated by Model SF (the red solid line in (a),(c)) provides a smooth curve that captures the trend of sudden drop of

annual average temperature well and a slight misfit before the sudden drop. Other models (the blue, orange, and green solid lines in (a),(c)) do not capture the

trend after the sudden drop. All models in (b),(d) show a good emulation before the sudden jump but only Model SF (red solid line) captures the trend of

mean temperature following the jump

(Figure 6(a) and 6(c)) shows almost perfect fit. In this sit-

uation, the training and test scenarios are the same, which

implies the SDM (5) fairly accurately models the annual mean

temperature. The emulated temperature of the drop scenario

based on the low scenario shows some misfit before and

after the sudden drop of CO2 concentration in both conti-

nents (Figure 6(b) and 6(d)), although the misfit is modest

after the drop in NA. A misfit after the sudden drop for an

emulator trained on the low scenario is not surprising. The

misfit before the drop is not unexpected either, because the
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atmospheric CO2 concentration before the drop in the drop
scenario is much higher than the highest level in the low sce-

nario, so it requires an extrapolation from the training set.

Overall, the emulator performs quite well even in this extreme

drop case. In other situations not shown here, the emulator of

mean temperature under SDM (5) also performs well.

To assess the fit quantitatively, we exploit our multiple real-

izations of each scenario to compute a pure lack-of-fit index

whose validity does not depend on knowing the form of the

mean function (Montgomery, 2013; Castruccio et al., 2014).

This lack-of-fit index I1(s) (or just I1) measures emulation

performance at location s relative to the optimal emulation

possible given initial condition uncertainty. Let T̂(s, t) denote

the emulated mean temperature at location s and year t (t = 1

corresponding to the year 2010 where the scenarios diverge).

We compare the sum of squared deviations of the actual real-

izations from the emulated temperature T̂(s, t) and the average

across realizations T̄(s, t),

I1(s) =

R∑
r=1

m∑
t=1

[Tr(s, t) − T̂(s, t)]2

R
R−1

R∑
r=1

m∑
t=1

[Tr(s, t) − T̄(s, t)]2
.

The numerator measures the performance of the emulator,

and the denominator gives an unbiased estimator of mean

squared error of a “perfect” emulator (i.e., if we had an infi-

nite number of realizations under the scenario of interest).

Under the assumption that the different realizations of a given

scenario are independent and identically distributed (and that

realizations of different scenarios are independent), the mean

of the numerator of I1 must be at least as large as the mean of

the denominator, except possibly when the training and test

scenarios are the same. Thus, values of I1 near 1 indicate an

excellent fit.

The values of I1 in NA using SDM (5) when the emu-

lator is estimated by each of the five scenarios are shown

in Figure 7, in which the column labels indicate the train-

ing scenario and the row labels indicate the test scenario.

For all pairs of training and test scenarios and all pixels in

NA, I1 is at most 1.22, and if we exclude the drop scenario

as a test scenario (the fourth row of Figure 7), the largest

I1 value is 1.13. Within each row, as we might expect, the

mean I1 value is smallest when the training scenario and

test scenario are the same. The emulator performs quite well

throughout NA even when the scenarios differ. SDM (5) also

performs well in AF in all cases (see the values of I1 in AF in

supplementary material).

FIGURE 9 I1 values for the drop scenario training on the low scenario for different statistical models in NA. The diagonal figures are histograms of I1

values; Model SF has the smallest values overall. Dashed lines are the 1–1 line. Points under these dashed lines indicate pixels for which the emulator under

the row-labeled model performs better than the column-labeled model
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6.2 Performance of different emulators

We now consider results for all four emulator models in

Table 1 in Section 4. Figure 8 shows the annual mean tem-

perature trajectory for the drop and jump scenarios at two

locations (see “+” in Figure 2 for locations) for these four

emulators, compared with the average temperature of five

realizations in each scenario. Model SF (SDM (5)) captures

the trend of mean temperature following the sudden change of

CO2 for both the drop and jump scenarios, but does slightly

worse before the sudden change in the drop scenario. The

other three models (Model V, Model SV, and Model F) cannot

track well the sudden change of the annual mean temperature

trend. Figure 9 gives scatterplots of I1 values for the drop sce-

nario in NA based on the low scenario for all pairs of the four

different models (see supplementary material for same figure

in AF) and shows the emulator generated by Model SF per-

forms better than the other three emulators as measured by I1

for almost all grid points.

To explore further the ability of an emulator to capture the

trend following a sudden change of CO2, we consider emula-

tion for the drop scenario for illustration and calculate I1 for

the 30 years following the sudden drop (from the year 2111 to

2140, the sudden drop is at year 2110), and denote the index

as I(Drop30)
1

. The index I(R)
1

is I1 calculated over the remaining

years (from the year 2010 to 2110 and 2141 to 2399). The

choice of 30 years after the drop is somewhat arbitrary, but

the results are not qualitatively changed by moderate changes

in the length of this period (results not shown here).

Table 4 shows emulator Model SF has the smallest aver-

age I1 value among the four emulators for both NA and AF.

Results for I(Drop30)
1

and I(R)
1

show that essentially all of the

advantage of Model SF over the other emulator models occurs

in the 30-year post-drop period. Indeed, all four emulators

TABLE 4 Sample means and standard deviations across pixels of I1,

I(Drop30)
1

and I(R)
1

for the drop scenario training on the low scenario in NA
and AF. These three indices are calculated in different time periods. I1is

from year 2010 to 2399, I(Drop30)
1

is from year 2111 to 2140 (the sudden

drop is at year 2110) and I(R)
1

is from year 2010 to 2110 and 2141 to
2399. A value close to 1 means perfect fit

NA AF
Index Method mean sd mean sd

I1 Model V 1.275 0.254 1.290 0.203

Model F 1.159 0.064 1.316 0.303

Model SV 1.215 0.123 1.279 0.210

Model SF 1.095 0.044 1.215 0.104

I(Drop30)
1

Model V 3.302 2.601 3.182 1.669

Model F 2.321 0.512 3.568 2.960

Model SV 2.530 0.945 3.500 2.244

Model SF 1.354 0.148 2.147 1.017

I(R)
1

Model V 1.094 0.057 1.140 0.151

Model F 1.061 0.035 1.142 0.152

Model SV 1.105 0.064 1.105 0.099

Model SF 1.073 0.043 1.142 0.079

perform well and with little difference between them when

one excludes this period (see supplementary material for plots

of IDrop30

1
, I(R)

1
for NA and AF).

When we use all five realizations of a given scenario in

the training sets, the emulators that do not use spatial infor-

mation arguably work well enough for many purposes. If we

use fewer realizations, the differences between the emulators

that use spatial information and those that do not become

much more dramatic (see the supplementary materials for

more details).

7 DISCUSSION

We have shown the effectiveness of including spatial depen-

dence in some of the regression parameters of an emulator of

annual mean temperature at the pixel level of a GCM. We fit

parameters separately for the two continents NA and AF, and

the clear differences in hyperparameters in Table 2 show that

one would not want to assume these parameters were equal

over all land regions. We would expect some parameters to

differ even more over water, especially 𝜌, which controls the

decay of the effect of past CO2 values on the present climate.

Thus, if one wanted to develop a unified global emulator,

one would need to take account of differences between con-

tinents and between land and ocean. It is not clear to us that

there would be much benefit in developing such an emulator

for annual mean temperatures. If, as would often be the case,

one wants also to emulate variations about the mean, then a

global model would be critical to capture spatial dependen-

cies at all scales, in which case, an approach such as the one

in Castruccio et al. (2014) would be relevant.

The very simple form for the distributed lag coefficients

given in (5) allows one to estimate the parameters of the emu-

lator well with as few as one GCM run in some circumstances.

However, this very simple form cannot be expected to be

exactly correct and can thus be a source of the bias when try-

ing, for example, to emulate the drop scenario when training

on the low scenario. Indeed, Table 2 shows some evidence

for this bias in the consistent patterns across training scenar-

ios for NA and AF. Thus, when one has a sufficiently large

and diverse training set, one may want to use a more complex

model than in SDM (5) by, for example, allowing nonlinear

terms in log[CO2r]. In this case, one might also want to con-

sider allowing the rate parameter 𝜌 to vary within a continent

by, for example, being larger for coastal pixels. It then might

also make sense to include additional terms in the model, for

example, to include a “medium-term” effect in addition to the

short- and long-term effects in the model presented here. We

have tried including such an effect in the situations studied

here and found that the multicollinearity between the resulting

covariates made parameter estimation very difficult.

Another approach to reducing bias due to model mis-

specification would be to allow the training scenarios used

for an emulator to depend on the scenario being emulated.
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Presumably, one should choose scenarios for the training set

that are similar in some relevant sense to the scenario being

emulated. However, how to define similarity of scenarios is

not so clear because we might want to use only parts of

one scenario within the training set. For example, one might

use the jump scenario only up to the time of the jump to

train an emulator for the hi scenario. This approach deserves

further investigation (see the supplementary materials for

more details).

Castruccio et al. (2014) also developed an emulator for

annual precipitation levels, and we expect that including spa-

tial effects would be particularly helpful here for pixel-wise

emulation due to the substantial amount of interannual vari-

ation in precipitation at the pixel level. Both this work and

Castruccio et al. (2014) only look at annual averages, but for

many impacts, seasonal or even shorter term averages would

be of greater interest. In principle, the methodologies devel-

oped here could be applied to seasonal averages, but the noise

would necessarily be larger and one might want to use a model

that explicitly includes a seasonal component that changes

slowly over time rather than developing a separate model for

each season. In addition, as one moves to shorter time scales,

temporal dependencies will be stronger and more attention

should be paid to modeling the space-time dependence in the

error term.

Although the focus here has been on the emulation of the

mean of annual average temperature at the pixel level, our

model for the space-time variations about the mean could

also be of value for climate model emulation. In particular,

by developing a separate model for every continent (or other

appropriately defined region) rather than a global model as

in Castruccio and Stein (2013), we avoid the challenge of

capturing nonstationarities at land/ocean boundaries, perhaps

yielding simple and effective regional emulators of the annual

average temperature process and not just its mean.

APPENDIX

This appendix considers situations under which our estimates

of the regression coefficients 𝛽
(i)
1
(s) and 𝛽

(i)
2
(s) should be

effectively unbiased. This unbiasedness is the key assumption

underlying (8), which says we can then use the multiple real-

izations to unbiasedly estimate differences in mean square

errors of these coefficients between spatial and nonspatial

methods. It suffices to consider the results for a single pixel,

so we drop the dependence of any quantity on location s.

Suppose Y1,… ,Yr represent r iid realizations of the response

vector (average annual temperatures at the pixel), which have

common mean 𝜽 and common covariance matrix V . If we

assume 𝜽 = X𝜷 (note that the covariate matrix X is the same

for all realizations), then the generalized least squares esti-

mate of 𝜷 is 𝜷̂ =
(
XTV−1X

)−1XTV−1Ȳ, where Ȳ = 1

r

∑r
j=1 Yj.

When 𝜽= X𝜷0, then E𝜷̂ = 𝜷0. However, even when the mean

model is incorrectly specified, if we define 𝜷0 as the mini-

mizer of (X𝜷 − 𝜽)TV − 1(X𝜷 − 𝜽), then we still have E𝜷̂ = 𝜷0.

Thus, in this idealized setting, the generalized least squares

estimate for 𝜷 is unbiased for 𝜷 under this definition of the

“true” value of 𝜷 even if the mean model is misspecified.

Following standard practice in the climate modeling litera-

ture, we have been assuming that the different realizations of

a GCM under the same scenario produce iid realizations of

a stochastic process, so the assumption that Y1,… ,Yr are iid

is well grounded. However, there are two complications with

the argument of the preceding paragraph. First, the covari-

ance matrix V needs to be estimated because of the presence

of the autoregressive coefficient and, second, our mean model

includes the nonlinear parameter 𝜌. As Table 2 shows, the

autoregressive coefficient is quite small (at least when esti-

mated by model SDM (5)) and, hence, should have little

impact on the estimates of the mean parameters. The need

to estimate 𝜌 should have little impact on the expected value

of estimates of the linear mean parameters as long as 𝜌 is

well estimated. At least when 𝜌 is assumed constant through-

out the continent, 𝜌 should be very stably estimated, which,

Table 2 shows, is the case under model SDM (5). Thus, we

believe that the comparisons between spatial and nonspatial

estimation methods in Table 3 are fair.
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