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ABSTRACT

The U.S. Clean Power Plan (CPP) seeks to reduce CO2 emissions from electric
power by 32% from 2005 levels, in part, by adjusting the generation mix. Gen-
erating technologies can substitute via two distinct, but interdependent mecha-
nisms: i) utilization—i.e. adjustment of operations of existing capacity and ii)
expansion—i.e. decommissioning and construction of capacity. We develop a
framework for analyzing these interdependent mechanisms, then construct and
validate an empirical model of the U.S. electricity sector using recent data. As-
suming current low gas prices persist, increasing utilization of gas (at the expense
of higher-emitting coal) will drive higher returns to gas capacity. As a result,
under our business-as-usual scenario for 2030 (no CPP) we project approximately
26% less CO2 emissions than 2005 levels, indicating that the CPP target could
be met with only limited policy intervention.

Keywords: Clean Power Plan, Electricity generation, Carbon emissions,
Technology substitution, Capacity utilization, Capacity expansion

https://doi.org/10.5547/01956574.38.5.jpet

INTRODUCTION

The electric power sector plays a pivotal role in economic development (Payne, 2010) and
greenhouse gas (GHG) emissions (Williams et al. 2012), making this sector a primary policy target
for emission reduction in the United States and around the world. On August 3, 2015, the U.S.
Environmental Protection Agency (EPA) announced the Clean Power Plan (CPP) to reduce carbon
pollution. The rule promotes flexibility in meeting carbon targets by focusing on emission perfor-
mance that reflects the “best system of emission reduction” based on three building blocks for
supply-side management: improved plant-level (largely coal-fired power) efficiency, switching util-
ization of existing plants to emphasize less coal and more gas generation, and constructing more
renewable power generation capacity (EPA, 2015a). Previous drafts of the CPP rule included a
fourth building block: more efficient electricity use. Despite being left off the most recent list of
EPA building blocks, end-use efficiency and demand-side management remain an important mech-
anism for complying with the CPP. Increasing end-use efficiency may have significant potential in
offsetting increased total electricity demand (Wang and Brown, 2014). However, the focus of this
paper is on endogenous supply-side responses (i.e. capacity utilization and expansion).
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Table 1: The Mapping between the EPA CPP Building Blocks and Mechanisms
Determining Changes in Electricity Generation (EPA, 2015a)

1. Capacity utilization maps to the second and expansion to the third EPA CPP building block shown in Table 1.

The intent of the CPP rule is to give individual states flexibility to meet state-specific
targets. While it is aimed at individual states, the emission target is at the national-level. When
fully implemented, the CPP aims to reduce carbon pollution from the U.S. electricity sector by
32.0% below 2005 levels by 2030 (EPA, 2015a). The magnitude and scope of emission reduction
policy interventions at present depend on the difference between a business-as-usual (BAU) pro-
jection and the CPP target of 32.0% reductions in 2030. If the difference between the BAU pro-
jection and the target is small, then the intervention required to meet the target would be expected
to be small, and vice versa. Thus, predicting the future evolution of electricity generation is critical
for designing appropriate emission reduction policies. This paper provides such an assessment by
projecting a BAU scenario starting in 2007 (prior to the shale gas boom) and shifting natural gas
prices to 2014 levels. The BAU case describes the technological mix of the electricity sector that
might meet 2030 electricity demands and resulting total CO2 emissions—driven by the decline in
gas price, mercury standards, regulatory and resource constraints, and 30% capital subsidies for
solar and wind (extended to 2030). Several of these current policies are already driving down sector-
wide CO2 intensity toward the CPP target.

Changes in the level of electricity generation from each technology arise from two distinct
economic mechanisms: i) capacity utilization—increases or decreases in operation of existing dis-
patchable capacity and ii) capacity expansion—construction of new and retiring of old capacity.1

From the sector-level perspective, utilization is the substitution between existing capacities of dif-
ferent technologies in response to prevailing economic conditions, especially fuel prices. This is
also termed ‘fuel switching’. Utilization depends on a combination of dispatchability (i.e. the ability
to adjust operations, a characteristic of the technology) and technological substitution (i.e. the ability
of one technology to replace another, a characteristic of the system). Expansion in a certain tech-
nology, on the other hand, is driven by longer-run returns on capital investment. The two mecha-
nisms are interrelated in that returns partly depend on how much generation is produced per unit
of capacity (i.e. utilization), and short-term utilization changes may be counterbalanced by long-
term expansion. Our aim here is to explicitly represent capacity utilization, expansion, and their
interdependency in the face of exogenous perturbations to fuel prices or technology.

In so doing, we make the following contributions to the electric power sector literature.
First, using a simple analytical model, we formally characterize the interdependency between ca-
pacity utilization and expansion in the generation of electricity—highlighting the role of key pa-
rameters in the power sector. If we impose a gas price shock, then in the short-run, because of fixed
capacity (i.e. elasticity of capacity supply is zero), capacity returns increase, and the sector quickly
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Figure 1: Total CO2 Emissions in the Electricity Sector (left-axis) and Total Generation
(right-axis) from 1989—2013

Notes: EIA projection (EIA, 2015a) for total generation in 2030 with associated total emissions using a carbon intensity
projection using 1989—2013 data (A) and 2007—2013 data only (B).

adjusts utilization patterns. Returns to capacity are larger when opportunities for gas power (high
substitutability and low current generation share) are greater. High returns drive longer-run expan-
sion, but the returns decline with time as the sector expands toward the long-run equilibrium.
Second, we extend the analytical model to the U.S. electricity sector and chart a path forward for
substantiating models that seek to forecast electricity generation. A corollary contribution is the
justification and implementation of an alternate constant elasticity of substitution that ensures input
values sum to the output value in the context of electricity (i.e. GWh). Third, using the substantiated
model of the U.S. electricity sector, we discuss the magnitude of policies necessary to meet the
EPA CPP nationwide target. Driven by the “new normal” in gas prices following the U.S. shale
boom and current renewable policies (i.e. mercury regulation and investment subsidies) extended
to 2030, electricity sector CO2 emissions in 2030 may fall by 26.0% compared to the 2005 base-
line—just short of the 32.0% CPP target. Therefore, the magnitude of policy intervention needed
to meet the CPP target may be much smaller than previous studies suggest.

We begin with a review of the recent decline in CO2 intensity in the U.S. electric power
sector and discuss potential mechanisms which might help explain this trend. After a review of the
prevailing classes of economic models used to project electricity generation in section II, section
III presents a simplified analytical framework that captures dispatchability, technological substitu-
tion, expansion, and their interdependency. This analytical model serves to provide specific insights
into how these economic mechanisms interact. Section IV extends the analytical model into an
empirical model of the U.S. electricity sector and substantiates the model against historical obser-
vations. Section V uses the substantiated model to forecast electricity generation in 2030 and com-
pares to the CPP target. Section VI discusses the implications of the BAU result and concludes.

I. UNDERSTANDING THE DECLINING CO2 INTENSITY IN THE U.S. ELECTRICITY
SECTOR

Sector-wide CO2 intensity has declined in the U.S. electricity sector since 2007. Figure 1
shows that from 1989 to 2007 sector-wide carbon emissions (vertical bars measured against the
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2. Sector-wide emissions will also depend on total generation. We assume exogenous electricity demand throughout this
work (based on EIA AEO projections), focusing instead on the evolution of the supply-side.

left-axis) follows total generation (connected solid dots on the right-axis), indicating a roughly
constant sector-wide CO2 intensity (million metric tons of CO2 per TWh). However, after 2007 the
CO2 intensity, as well as overall emissions, dropped sharply, as evidenced by the decoupling of
generation and total CO2 emissions in Figure 1. In fact, the level of sector-wide CO2 emissions
observed in 2013 are already 14.6% below the 2005 level, the benchmark year for the CPP target.
Furthermore, the wedge between generation and emissions seems to be growing.

For descriptive purposes, we perform a linear regression of CO2 intensity on time from
1989–2013 which can be extrapolated to 2030 to form a naı̈ve projection of CO2 intensity. When
combined with the U.S. Energy Information Administration (EIA) Annual Energy Outlook (AEO)
estimate of total generation in 2030 and their embedded assumptions on end-use efficiency and
demand-side evolution, this gives a naı̈ve prediction of total emissions in 2030. Using this simplistic
approach, we project total emissions in 2030 to be 8.2% below 2005 levels (Figure 1, point A).
However, if we perform a linear regression only over the observations after the decoupling of
emissions and generation (i.e. 2007–2013), our projection of total emissions is now 44.5% below
2005 levels, which exceeds the CPP target (Figure 1, point B). Reality likely lies somewhere in
between these two naı̈ve projections, and the range reinforces the need for a reliable BAU scenario
to 2030.

Obtaining a robust and reliable BAU scenario hinges on understanding the causes of the
recent decline in sector-wide CO2 intensity.2 We start with the following accounting equation:

g cE = β ⋅ q = β ⋅ (8,760 ⋅ c ⋅ q ) (1)t t t t t t

where is the total emissions, is the emission rate (per GWh), is generation (GWh), 8,760gE β qt t t

is the number of hours in a year, is the annual capacity factor, and is the capacity (GW) ofcc qt t

technology . Focusing on the percentage change in emissions over the recent past, we can log-t
linearize [1] to highlight key mechanisms for changing emissions:

ˆ cÊ = β + ĉ + q̂ (2)t t t t

where the ‘hat’ accent corresponds to percentage change in the corresponding variable. Recalling
the CPP building blocks in Table 1, the three terms on the right-hand side of [2] map to the three
distinct mechanisms which impact the sector-wide CO2 intensity: i) plant-level emission rates, ii)
capacity utilization, and iii) capacity expansion, respectively. Utilization plays an important role in
determining returns to capacity ( ), and the latter, in turn, influences the incentive for expansion.p̂kt

These inter-relationships are illustrated in Figure 2.
We can utilize this framework to better understand the impact of the U.S. shale gas boom.

Starting in 2007, the price of gas decoupled from the price of oil and fell dramatically in subsequent
years (see Figure 3). This decrease in relative price of gas to coal power (a competing technology)
led to increased generation from gas power using existing capacity (Lu, Salovaara, and McElroy,
2012).

Gas power’s higher utilization rate increased returns to capacity which, when combined
with expectations of coal power emissions regulation, has driven an expansion in gas capacity. Point
A in Figure 1 might be thought of as representing the case where all the adjustment in utilization
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Figure 2: A Conceptual Representation of the Capacity Utilization, Expansion, and Their
Interdependency

Figure 3: Fuel Prices per MWh of Electricity Produced (nominal US$)

rates has occurred so that the mix in 2013 represents the equilibrium (i.e. does not change further),
conditional on existing capacity. However, expansion will likely continue toward 2030 and beyond,
indicating that the current generation mix does not reflect a long run equilibrium.

Another driver of expansion over this period were the investment tax credits favoring
renewable capacity (primarily solar and wind), which also likely led to a decline in sector-wide
emissions. Understanding how these trends may or may not continue in the long-run is critical to
creation of a reliable BAU for the 2030 targets. We now turn to a review of models that have been
used explore this issue.

II. CLASSES OF MODELS USED TO PROJECT ELECTRICITY GENERATION

There is a large literature offering projections of electricity generation. Here we limit the
review to studies after the fall in gas prices (~2009) that report a value for sector-wide CO2

emissions. Although the numerical value may not affect the conclusions of the particular study,
focusing on the reported magnitude allows us to compare methodologies used to construct BAU
projections. These studies tend to suffer from some combination of the following three related
limitations: i) neglecting the interdependent utilization and expansion mechanisms, ii) assuming
equilibrium in the base year, and iii) not substantiating the model against historical observations.

First of all, it is necessary to define and explicitly map utilization and expansion mecha-
nisms in terms of the technology- and sector-level extensive (i.e. number of units) and intensive
(i.e. output per unit) margins (see Table 2). Capacity expansion (in GW) maps to the technology-
level extensive margin, and total electricity demand (in GWh) maps to the sector-level extensive
margin. Capacity utilization covers the entire intensive margin and is based on two determinants:
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Table 2: Intensive and Extensive Margins for Electric Power at the Sector-level
(top-down) Technology-level (bottom-up)

3. We do not wish to dismiss the relative merits of other bottom-up and top-down approaches, but rather stress the
importance of: i) neglecting the interdependent utilization and expansion mechanisms, ii) assuming equilibrium in the base
year, and iii) not substantiating the model against historical observations.

dispatchability (technology-level intensive margin) and technological substitution (sector-level in-
tensive margin).

There are two primary classes of models that have proved to be useful in making such
projections: bottom-up and top-down (Hourcade et al. 2006). Bottom-up models focus on technol-
ogy-level margins and are useful in incorporating a vast amount of detail including time-varying
demand, technological detail, and complex regulations (e.g. loan guarantees, state renewable port-
folio standards). Top-down models focus on margins for the sector as a whole and are useful in
capturing broader economy-wide changes. However, when viewed through the intensive and ex-
tensive margins in Table 2, both classes of models may not completely capture the evolution in
generation patterns.3

Falling under the bottom-up classification, least cost partial equilibrium optimization mod-
els (e.g. Loulou et al. 2004) capture both utilization and expansion, but the least cost objective
ignores the link between utilization and expansion (via returns) shown in Figure 2. On the other
hand, top-down models (e.g. Paltsev et al. (2005), Sue Wing (2006), Pant (2007), and Château et
al. (2014)), both static and dynamic, suffer from comparatively coarse technological detail, and
substitution mechanisms in the models do not map directly with the mechanisms described above.
For instance, while top-down models may specify both technological substitution and capital ex-
pansion, capital does not map precisely to capacity in terms of quantities (GW). If capital does not
map to capacity, then technological substitution does not map precisely to utilization (generation
per unit of capacity, rather than capital). This makes top-down models difficult to calibrate to data;
instead, modelers often calibrate to total generation despite the two distinct mechanisms. Imprecise
mapping also makes top-down results difficult to communicate for practical purposes.

The second limitation of existing BAU projections is the treatment of the base year of
analysis. Bottom-up models are generally calibrated to a single base year (e.g. Bushnell et al. 2014),
which, combined with the lack of linkage between utilization and expansion, may ignore ongoing
movement towards capacity expansion driven by increased utilization rates. For instance, Burtraw
and Woerman (2013) attribute a large reduction in CO2 intensity to gas-coal substitution, but ac-
knowledge that their BAU scenario does not account for further substitution in the future. Top-
down models (e.g. computable general equilibrium (CGE) models) generally assume that the current
generation mix is in equilibrium (e.g. Lanz and Rausch, 2011; Cai and Arora, 2015), despite evi-
dence to the contrary (Figure 1). Both classes of models essentially project sector-wide emissions
using the current CO2 intensity and neglect the role of increased utilization rates in driving long-
run capacity expansion. As such, we hypothesize that both classes of models likely underestimate
the sectoral response to economic shocks, such as the recent gas price decline. In the present context
this means that we would expect these models to underestimate sector-wide CO2 emission reduc-
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4. The authors recognize that a complete validation is impossible. Substantiation and validation are used interchangeably
throughout, and the exercises are meant to lend confidence in the model’s numerical results.

tions in 2030, thereby calling for more stringent policies than necessary to reach the desired CPP
target. In fact, we later see this in our results.

Thirdly, because bottom-up model parameters are calibrated to a single year and top-down
models begin with a snapshot of the base year economy in equilibrium, both model classes are
rarely substantiated against historical trends (DeCanio, 2003). While such a validation exercise4

may not be necessary for some analyses, substantiating a projection model across several time
points can lend confidence regarding the veracity of the numerical results, which are critical for
policy design.

The following section outlines a simple analytical model which explicitly and endoge-
nously derives capacity dispatchability, substitution, and expansion, thereby capturing both the
intensive and extensive margins of individual technologies and the electricity sector. This simple
framework makes clear the limitations of the two model classes described above, and offers insight
in what we might expect in the 2030 BAU projections.

III. A SIMPLE ANALYTIC FRAMEWORK

The intent of the simplified model is to explicitly capture the technology- and sector-level
intensive and extensive margins (i.e. dispatchability, substitution, expansion, and total electricity
demand) to characterize the interaction between the distinct mechanisms that determine changes in
electricity generation in response to various stimuli. Box 1 contains the variables and equations for
the simple analytical framework.

The first equation in Box 1 (equation [3]), dictates that growth in total electricity demand
is driven by exogenous factors (e.g. population, income) as well as the endogenous price ofDd̂

electricity. The latter response is governed by the own-price demand elasticity, . The aggregateD– g

power sector is constrained to cover its costs (equation [4]). Derived demands for different tech-
nologies in the production of electricity are determined by the total power demand, as well as
technology substitution at the sector-level intensive margin (equation [5]). The ease with which
this can occur is governed by a constant elasticity of substitution (CES) parameter, . Attributestσ ≥0
of the specific electric power system including space, time, and contract lead time prevent perfect
substitutability (Hirth et al. 2014). Dispatchability, governed by [7], is represented by a CES pa-
rameter depicting the elasticity of substitution between inputs used to produce electricity for a given
technology, . A non-dispatchable technology is unable to substitute additional operating andiσ ≥0t

maintenance inputs for a fixed capacity (i.e. ), while a dispatchable technology could adjustiσ = 0t

utilization, as reflected in a positive elasticity of substitution amongst inputs (i.e. ). The scopeiσ �0t

for capacity expansion in response to a given increase in returns, is given by a technology-specific
own-price elasticity of capital supply to that technology, (equation [8]). Note that the sector-slt

level parameters, and , do not have technology sub-scripts, while the technology-levelD t– g σ
margin parameters, and , vary across different electricity generation technologies.i sσ lt t

A. Total Electricity Demand Shift

With this analytical framework, we are now in a position to explore how the key economic
elements of the power system interact. To begin with, we consider the impact of an outward shift
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5. Online Appendix A shows the complete derivation of this relationship.

in the total demand for electric power, represented by in [3]. Equating demand and supply forDd̂

capacity ([7] and [8], respectively) and solving the model by substituting for price indices and
rearranging terms,5 allows us to see the relationship between the total demand shifter, the extensive
and intensive margins, and the returns of capacity, :p̂ks

1
Dˆp̂ = d ⋅ (11)ks g D t g i sX h g + h σ (1–X ) + σ (1– h ) + ls ks ks s s ks s

The denominator of [11] contains four different terms. Each one relates to a different
aspect of the power sector’s response to increased demand. The larger any one of these terms is,
the more dampened will be the response of returns to a given type of generation capacity.

The first term in the denominator represents the electricity demand effect. The more price
responsive the consumer demand for power is, the larger this term. This demand-side dampening
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6. Online Appendix A shows the complete derivation of this relationship.

effect will be more pronounced, the larger is the share of this type of capacity in total power
generation, and the larger is capital’s share in the technology in question.

The second term in the denominator of [11] represents the potential for substituting be-
tween alternative power generating technologies. For technologies that represent a small share of
total capacity, a large elasticity of substitution dampens the change in capital returns for a given
demand shock.

The third term in the denominator captures the dispatchability of a particular technology.
The higher this elasticity of substitution, the more readily the technology can respond to increased
demand (e.g. gas-generated power) and the more damped will be the increase in returns to that type
of capacity. We can now see that the returns to capacity is less responsive to the demand shift as
technological substitution and dispatchability increase. Dispatchability and technological substitu-
tion contribute to the utilization mechanism. If the ability to adjust utilization is high, then the need
for expansion is less—reflected by the dampened change in returns to capacity. Alternatively, con-
sider the case where technologies are neither dispatchable nor substitutable (e.g. an electricity
system comprising only wind and solar). Returns to capacity would be highly sensitive to demand
shocks in this case because the only way to meet the demand growth would be through capacity
expansion.

The final term in the denominator of [11] pertains to the elasticity of capacity supply for
a given type of generating technology. Not surprisingly, when this is small, as we expect to be the
case in the short run, the change in returns to that particular type of capacity, in response to the
demand shock, is more pronounced. At the other extreme, if the supply of capital is perfectly elastic,
as would only be the case in the very long run, then the denominator becomes infinite and the
power sector can adjust its capacity seamlessly to the new demand conditions. This is how a
response to fuel price (e.g. gas) can have further consequences to the equilibrium mix of generation
over the long-run.

B. Fuel Price Shift

Let us next turn our analysis of the linkages between utilization and expansion to the
central issue in this paper, namely the power sector’s response to declining natural gas prices. In
order to focus the analysis, we assume that only non-fuel inputs (e.g. operating costs) substitute
with capacity, so that the price index, given by , replaces the price index, , in [6]v gp̂ = h p̂ p̂∑t it it t

i∈V

where V is the set of non-fuel inputs, including capacity. Fuel will be treated as an input used in
fixed proportion to electricity generation. With these adjustments we can now write the relationship
between the exogenously perturbed price of fuel and the returns to capacity as:

g D t gX g + σ (1–X )s sp̂ = – h p̂ ⋅ (12)ks fs fs g v D v t g i v sX h g + h σ (1–X ) + σ (1– h ) + ls ks ks s s ks s

where is the share of capacity cost among other non-fuel input costs comprising set V, is thevh hks fs

cost share of the fuel (e.g. natural gas), is the percent change in fuel price for technology , andp̂ sfs

the denominator is identical to the denominator in [11].6 Since all the terms in [12] are non-
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7. The derivation of the partial derivatives of these relationships are also in Online Appendix A.
8. Chetty et al. (2011) finds a labor supply elasticity of 0.30, which is used for O&M. Brown (1998) finds long-run

supply elasticities of coal and oil to be 1.86 and 0.51, respectively. Long-run supply elasticities for conventional (pre-shale)
gas range from 0.4 to 0.8 (Arora, 2014; Ponce and Neumann, 2015; Hausmann and Kellogg, 2015). Instead, we choose 1.2
because Wiggins and Etienne (2015) show an increase in supply elasticity beginning around 2009, which may be due in
part to decreasing drill times, pad drilling, and rig mobility, which indicate shale gas might be far more elastic than
conventional gas (Coechner, 2010; EIA 2012). Household income is exogenous (i.e. not impacted by electricity prices and
tax), and there is no change in international trade. These simplifying assumptions allow for a more controlled analysis and
validation of the empirical US electricity sector model.

9. The model described by the non-linear equations in this work are solved using the GEMPACK software (Harrison et
al. 2014).

negative, we can verify the expected result that a decline in the gas power price due to the fuel
price shift (i.e. ) will increase the returns to capacity for this particular technology.h p̂ �0fs fs

Also, the returns from the fuel price shift will be larger as the demand elasticity and
technological substitutability increase. The returns to capacity will also be larger as share of natural
gas generation in the current mix of generation decreases if the ability to substitute dominates the
ability to adjust electricity demand (i.e. ).7 These three relationships indicate that returnst Dσ �g

will be larger when there are greater opportunities to increase market share.
In summary, utilization rates are dependent on final demand, technology, and the com-

position of the existing electricity system, which can be time-period and region-specific. Further-
more, utilization rates link directly to returns on capacity, which then links to capacity expansion
via [8]. Yet these linkages are not present in the bottom-up optimization models that minimize
capacity expansion cost, thereby ignoring returns to capacity.

This simple analytical model cannot possibly capture the complexities of the U.S. elec-
tricity sector. In the next section we will enrich the framework so we are able to explore, through
a series of model simulations, the following questions in the case of the U.S. electricity sector:
How did the fuel price decline manifest in the U.S. electricity sector? How will utilization changes
affect long-run capacity expansion to 2030?

IV. CAPACITY UTILIZATION AND EXPANSION IN THE U.S. ELECTRICITY
SECTOR

In this section we use data on U.S. electricity production to parameterize an empirical
version of the analytical framework discussed in the previous section. The empirical partial equi-
librium model described in this section has upward sloping supply curves for all inputs to electricity
production (i.e. operating and maintenance (O&M) which includes labor costs, gas, oil, and coal)
and downward sloping final electricity demand.8 Input supplies may be shifted to replicate historical
observations and or future price projections, but both supply and demand remain price responsive
and can capture rebound effects. In this section, ‘one-shot’ shifts to technology, prices, and policies
are applied to the 2007 base year, described by the GTAPv8 database (Narayanan et al. 2012), to
move the power sector to a new year (i.e. 2007 to 2002, 2007 to 2008, 2007 to 2009, 2007 to 2030,
etc.).9 This results in a series of comparative static results which may be analyzed for historical
fidelity or prospective policy purposes. The 2007 base year is an ideal starting point from which to
study impacts in the U.S. electricity sector in light of continual expansion driven by utilization from
the new normal in gas prices following the shale boom.
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Figure 4: Annual Capacity Factors from 2002–2012 EIA (2015b)

Notes: The slope of the trend line indicates the dispatchability of the technology. Black lines represent dispatchable tech-
nologies, while the gray lines represent non-dispatchable technologies. CC is combined-cycle and CT is combustion turbine.

First we introduce the specification for utilization, then capacity expansion. We perform
three validations. The first validation focuses on utilization by making capacity expansion exoge-
nous. The latter two validations connect the utilization and expansion specifications in a fully
endogenous model of the U.S. electricity sector (as shown in Figure 2) and tests the model’s ability
to project both total expansion and contributions to total expansion from each technology in re-
sponse to returns from the utilization portion, respectively. These validations support our specifi-
cations for utilization, expansion, and their interdependency in the U.S. electricity sector and lend
confidence to the predictive ability of the model.

A. Capacity Utilization

Capacity utilization comprises dispatchability and technological substitution. Dispatchable
technologies can be identified by changes in annual capacity factor (Figure 4). In the absence of
significant technological change, which could also impact utilization (e.g. efficiency), a dispatchable
technology might vary year to year in response to prevailing economic conditions. A non-dispatch-
able technology cannot adjust utilization. Figure 4 shows that fossil fuel technologies, coal, oil,
GasBL (base load), and GasP (peak load) power, are dispatchable, while nuclear, hydroelectric,
wind, solar, and other (comprising primarily waste and geothermal) power are non-dispatchable.
Some variability may occur in the non-dispatchable technologies due to normal annual operational
fluctuations (e.g. plant shutdowns, maintenance); annual rainfall in the case of hydroelectric power;
wind in the case of wind power; and sunlight in the case of solar power.

In the production of electricity from each technology, fuel and a capital-O&M composite
are assumed to be employed in fixed proportion to power generation from that technology. In the
capital-O&M composite nest, non-dispatchable technologies cannot substitute O&M in place of
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10. Dixon and Rimmer (2006) and Giesecke et al. (2013) implement the ACES specification in the context of labor and
land, respectively. van der Mensbrugghe and Peters (2016) compare ACES to the traditional CES formulation. Online
Appendix B provides some additional information regarding the theoretical interpretation for electricity production.

11. There are many reasonable substitution specifications (e.g. Paltsev et al. (2005), Sue Wing (2006), Pant (2007), and
Château et al. (2014)). The validation exercises in the following section help reinforce the credibility of the one presented
in Figure 5.

new capital, while dispatchable technologies can vary utilization rates according to a CES parameter
(as in [7]).

The second component of capacity utilization pertains to the substitutability of dispatchable
technologies in the production of electricity using existing capacity. Focusing on the annual utili-
zation in Figure 4, we see that coal and oil utilization declines, while gas utilization increases in
response to the decline in gas prices starting in 2009 (recall Figure 3).

Generating technologies are not perfectly substitutable due to factors such as space, time,
and contract lead time, especially in a national-level model (Hirth et al. 2014). Supply must equal
demand instantaneously in an electricity network. As a result, from the system operator perspective,
the values of electricity produced with different generation technologies change over time due to:
i) the nature of demand, which can fluctuate by the minute, hour, day, and season, and ii) the
operational constraints of technologies that may prevent flexibility in responding to that demand.
Figure 5 shows how these features are represented for the production of electricity with existing
capacity (i.e. utilization) with a nested additive constant elasticity of substitution (ACES).10

We assume that transmission and distribution (T&D) and total generation are always used
in fixed proportions. Base type load and peak type load technologies are also demanded in fixed
proportions as inputs to total generation. The purpose of the base and peak load distinction is to
tease out operational considerations specific to the production of electricity. For example, nuclear
and coal power cannot ramp up and down operations quickly and economically in the face of peak
demand; therefore, they might substitute with one another, but not as easily with a technology that
is better-suited to match peak demand (e.g. gas and oil combustion turbines, GasP and oil). That
is, technologies only substitute with technologies of the same load type. Base load technologies are
defined as: nuclear, coal, GasBL, hydroelectric, wind, and other; peak load technologies are defined
as: GasP, oil, and solar. Total base and total peak are Leontief inputs to generation—i.e. demanded
in fixed proportion (assumed 85% and 15%, respectively).11 The subsequent validation exercises
support the usefulness of this specification.

B. Capacity Expansion

Next, we introduce capacity expansion to respond endogenously to returns derived from
utilization. It is important to define the difference between nominal (or nameplate) capacity and
effective generating capacity. Nominal capacity refers to the actual MW of capacity installed, while
effective capacity refers to the capacity that can reasonably be used to provide electricity generation.
That is, effective capacity, , is simply weighted by the capacity factor ( ). Since gen-e e cq q = c ⋅ qt t t t

eration is what balances supply and demand, effective capacity is important for decision-making in
expansion.

The total effective capacity changes can be decomposed into additional and retiring ca-
pacity. The rate of nominal retirements are a function of the changes in returns to capacity, , andcp̂t

the annual rate of technical retirements, , which is defined by the inverse of the technical lifetimert

of each existing technology. Together these two factors capture the “economic lifetime” of the plant
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Figure 5: A Representation of Nested Substitution of Electricity Generation Technologies

Notes: Parameters shown are year-to-year and calibrated over 2002–2012. Model sectors are in bold.

12. Data prior to 2014 is given as net capacity changes rather than distinguishing between additions and retirements.

where a plant may extend its lifetime if the rate of return is higher or shorten it if the returns become
lower.12

(100– p̂ )ktcrq̂ = ⋅ r ⋅ s (13)t t100

where is the percentage change in nominal and effective capacity for technology due tocrq̂ tt

retirements. The variable is the annual time step from the 2007 base year.s

Additional effective capacity is the sum of the net effective capacity and total retired
effective capacity net of changes in total capacity utilization from all technologies. In levels,

g oc ea crQ – c q = Q – c q (14)∑ ∑t t t t
t t

where is the required additional effective generation in the sector and is only pre-existingea ocQ qt

capacity such that is the change in generation resulting from just utilization changes. Thisocc q∑ t t
t

accounting condition, with generation terms on the left-hand side and effective capacity terms on
the right-hand side, ensures additional capacity meets the generation-based requirements. We can
see that, if generation needs and retirements increase with time (and utilization changes to be
relatively small), capacity additions will increase with time. Thus, supply elasticity must increase
with time.

We can determine the effective capacity additions for each technology according to the
following equations:

ca a eac ⋅ q = s ⋅ Q (15)t t t

where are nominal capacity additions. The coefficient is the share of effective capacityca aq st t

additions allocated to each technology .t
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These capacity allocation shares are derived using a multinomial logit (MNL) model where
electricity investor’s utility is solely a function of the change in rate of return on the capital inUt

technology , that is where the coefficient , marginal impact on utility from rate ofct U = α ⋅ p αt t

return, is assumed identical across generation types and is calibrated to data. The variable is thecpt

rate of return on new capacity and is linked to rental rates of existing capacity by:

c cp = a ⋅ p ⋅ t (16)t t kt t

where is rental rate of existing capacity due to change in capacity factor which comes from thepkt

capacity utilization portion of the model, is the technological efficiency of new capacity (com-at

pared to existing capacity), and is the level of capital taxes/subsidies for new capacity.ctt

This specification results in the following equation for :ast

cα ⋅ Pte
as = (17)ct α ⋅ Pte∑

t

This share determines how much of the total additional capacity need is allocated to each
technology in [15]. Thus, net expansion for a technology can be written as:

c ca crq = q – q (18)t t t

The three linkages in the original conceptual diagram in Figure 2 are thus: i) utilization
rates influencing returns to capacity ([7] from Box 1), ii) returns to capacity leading to capacity
retirements [13] and additions [16], and iii) capacity changes altering utilization rates (returning
to [7] from Box 1). The following section integrates these interdependent linkages to test the
predictive ability of the complete utilization-expansion model of electric power generation.

C. Threefold Validation

The first validation exercise, termed utilization-only, treats capacity changes as exogenous
(Table 3, first column) and focuses squarely on the utilization mechanism. After this, we let capacity
vary in response to the prevailing returns to each generating capacity as determined by utilization.
The full joint utilization-expansion model (used in both the second and third columns of Table 3)
are substantiated against observed and planned capacity additions from 2012—2018.

The purpose of the two joint utilization-expansion validations are to test how the model
performs in predicting both total capacity expansion (via [14]) as well as contributions from each
generating technology given endogenous changes in capacity rents from capacity utilization (via
[17]). That is, first, we project total capacity using a rolling average of previous years of generation
projections from the EIA’s Annual Energy Outlook (EIA, 2015) (Table 3, second column). Then,
we control for total capacity expansion to focus on the contributions from different technologies
(Table 3, third column). We show that the model closely matches observations from 2007 to 2018
with expected deviations (i.e. the model fails in predictable ways). Taken together, the three vali-
dation exercises contribute confidence to the model’s ability to capture utilization, expansion, and
their interdependency, and, thus, project a reasonable 2030 BAU scenario, in spite of the fact that
the aggregate nature of the model precludes the possibility of some capacity- and region-specific
policies (e.g. loan guarantees, state renewable portfolio standards).
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Table 3: Exogenous Inputs and Endogenous Outputs for Validation Exercises

Notes: Exogenous inputs are shaded. The endogenous model output that is validated is in bold.
* Derived by controlling for total capacity.

13. Online Appendix C expands upon the multi-period calibration.

Utilization-only validation

Observed annual capacity factors for generating technologies from 2002–2012 (see Figure
4) are used to calibrate dispatchability and technological substitution parameters for changes in the
generation mix arising from the utilization mechanism. We use O&M (with labor (BLS, 2015) as
a proxy), fuel (EIA, 2015a), capital (assumed constant), and tax data to construct total generation
costs for each technology in the United States from 2002—2012. These data are used to calibrate
year-to-year utilization (substitution) parameters for the base and peak load nests ( and ,t tσ σb p

respectively).
Using an ordinary least squares estimator, we find an annual elasticity of technological

substitution for base and peak load to be 0.462 and 0.472, respectively.13 These parameters represent
year-to-year estimates using observed data; however, for comparing the model results to observa-
tions over the medium-term, it is also important to include additional qualitative information that
may not appear in the year-to-year quantitative data. Of particular importance are utilities’ expec-
tations about coal regulation as well as the shortening of coal contract durations in the wake of the
fall in gas prices. The Clean Air Mercury Rule (CAMR) and the Mercury and Air Toxics Standards
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Figure 6: Utilization-only Validation: A Comparison of Model Results to Observations of
Generation from 2002—2012 in the United States

Notes: Observations are dotted gray lines, and model results are black markets and are not connected because they are
shifted separately from the 2007 base year. Correlations are next to each technology.

14. Validation results without these qualitative assumptions are shown in Online Appendix D.
15. The departure from the model and observations from 2002 to 2007 is consistent with a higher impact of mercury

and other emissions regulation than the costs we implemented.

(MATS), issued in 2005 and 2011, respectively, raised expectations for future regulations of mercury
and other emissions insofar that several power plants adopted the standards and raised the cost of
generation (EIA, 2014). Therefore, we include the estimated costs of these two regulations in the
analysis (EPA, 2005; EPA, 2011). Perhaps more impactful, the fall in gas prices beginning in 2009
drove renegotiation and cancellation of long-term coal contracts that were replaced by spot prices
(EIA, 2015c). The median duration of coal contract in the United States has been between approx-
imately three and five years (Kozhevnikova and Lange, 2009; Macmillan et al. 2013). If we assume
that all coal contracts are three years and expiration is uniformly distributed over those three years,
we would expect the year-to-year base load substitutability parameter to increase three-fold over
the medium- to long-term. While it is a rough approximation, this reflects the reality that base load
utilization is increasingly substitutable due to the cancellation of long-term coal contracts. These
two pieces of qualitative information are included in all of the validation exercises as well.14

Figure 6 shows that the utilization-only model follows observed results quite well, lending
confidence to model’s ability to projection capacity utilization in response to prevailing economic
conditions.15

Total capacity expansion validation

Moving to the joint utilization-expansion validations, the foremost difficulty arises from
the lag between planning period to expected service (i.e. lead time) given evolving economic
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Figure 7: Total Capacity Validation: Projections of Total Generation Needs from EIA
Annual Energy Outlooks from 2007 to 2015 along with the Observed and a Four-
year Rolling Average used as a Projection in the Validation Exercise

16. Project lead times vary by technology. Tidball et al. (2010) report an average time from order to expected service
of 6 years for nuclear power plants, 4 for coal, 4 for hydroelectric, 2-4 years for gas (depending on technology), 3 for wind,
and 2-3 for solar.

conditions over that time period. For instance, Tidball et al. (2010) reports roughly a four-year lead
time from the ordering of new capacity to the date of expected service; nuclear and coal lags are
likely longer, but neither play a significant role in capacity additions from 2007 to 2018.16 Unfor-
tunately, in reality, there is no natural experiment which would ensure that the rest of the economy
remains constant throughout the construction lead time. This is especially true in light of the eco-
nomic recession from 2007 to 2009 and the simultaneous decline in gas prices. This is not to say
that validation is not possible; instead, validation relies on qualitative discussion of the factors
leading to the departures between the model outputs and observations. That is, can we observe that
the model fails in expected ways? As in the previous section, model results are based on independent
static shifts from the 2007 base year. Nuclear and hydroelectric power are assumed not to expand
in the validation, because both are highly constrained by regulations and resource availability,
respectively, and do not respond as obviously to strictly economic variables. Capacity expansion
results are compared to observed capacity from 2007 to 2013 and planned capacity from 2014 to
2018 (EIA, 2015b).

A four-year rolling average of EIA AEO generation predictions are used to endogenously
determine total capacity expansion. The intent of using a four-year average for projected generation
is to control for differences between what is planned, and what actually comes into service, which
is dependent on factors unfolding during the lead time (e.g. the drop in electricity demand during
the economic recession from 2007 to 2009). Figure 7 shows that observed electricity generation
was almost always below the EIA AEO predictions.

Because the AEO projections consistently overestimate generation, especially leading into
the recession (AEO2007–AEO2009), we would expect the model to also overestimate the actual
capacity expansion in the ensuing years, due to the long-term planning horizon. Figure 8 shows
that, in fact, the model does overestimate from 2008–2011, as expected.

We also observe some deviation for years 2017 and 2018 in Figure 8. This is due to the
fact that planned capacity for 2018 in the EIA data does not account for all the total capacity needs,
since it is not necessary to plan four years in advance for some technologies (especially wind and
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Figure 8: Total Capacity Validation: Total Capacity Expansion Projected by the Model
Compared to Observations

Notes: Model results for each year are shifted from the 2007 base year. The correlation is 0.908.

solar). Thus, the model fails in an expected way. This validation shows that the model can reasonably
predict total capacity expansion over the long-run, given reasonable projections in total electricity
generation (which, of course, are elusive in practice).

Technology mix in capacity expansion validation

The above confounding factors for validating total capacity expansion demonstrate the
need to control for total capacity growth in order to explore the contributions from specific gen-
erating technologies. Here, we select shifts in generation which target the observed total capacity
expansion—i.e. the model tracks the observations in Figure 8. We then solely focus on how tech-
nology-specific capacity expands in response to prevailing economic conditions via utilization,
technological change in new capacity, and investment taxes/subsidies.

Here, capacity expansion observed in time is based on three driving factors: i) thes

projection of generation needs that controls for actual total capacity, ii) the technology available at
the planning stage (assumed ), and iii) assumed perfect information of input prices at the times–4
of expected service, . The second assumption is reasonable because materials must be purchaseds

well in advance of expected service; therefore, the technological efficiency and capital costs of the
generating units are prior to service year. Perfect information of future input prices, namely fuel,
may be contentious, but this assumption reflects the reality that system operators can cancel and
replace capacity contracts in the face of evolving prices after the planning stages but before service.
Because of this assumption, we can predict that the model would over-project expansion in gas
capacity as well as retirements of coal capacity, because the significant drop in gas prices would
not have been predicted by system operators in reality.

As hypothesized, the assumption of service year input prices leads to an over-prediction
of both capacity growth in gas power and retirements in coal power. This is because the model
projects capacity expansion given service year prices, while investment decisions would actually
be made in the planning years ( ) when prices of gas were relatively higher (see Figure 3).s–4
Similarly, because gas and coal are highly substitutable (shown in the capacity utilization module)
we observe a faster decline in coal capacity using the model (Figure 10). In years after the fall in
gas prices the model predictions for gas power and the predictions for the rate of coal retirements
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Figure 9: Technology Mix Validation: Gas Capacity Expansion from 2007–2018

Notes: Model results for each year are changes from the 2007 baseline. The correlation is 0.898.

Figure 10: Technology Mix Validation: Coal Capacity Expansion from 2007–2018

Notes: Model results for each year are changes from the 2007 baseline. The correlation is 0.916.

17. Another point to note regarding coal retirements is that they may not respond immediately to economic stimuli. The
annual rate of retirements and planned retirements observed in the data from 2007 to 2018 is roughly 1.1% of total capacity
which implies an economic lifetime of nearly 90 years, well over their technical lifetime (roughly 60 years), despite
decreasing returns to capacity. This is likely due to the fact that many of these plants are already paid off and environmental
policies preclude the construction of replacement coal plants. Coal power operators may elect to produce electricity using
existing plants as long as possible, even by co-firing with gas or biomass, to avoid costly capacity expansion.

more closely mirror those of the observations.17 Thus, the model fails in a predictable way which
lends support for the validity of the capacity expansion in response to fuel prices.

In addition to the fuel switching shown above, one of the more important trends in the
U.S. electricity sector is the expected rise in renewables in response to both technological change
and GHG policy. Tremendous growth in both wind and solar over a short time period creates
difficulty in projecting with certainty due to a lack of data points. Still, Figure 11 and Figure 12
show the model performs well for both technologies despite the rapid growth observed from 2007
onward.

Addressing DeCanio’s (2003) criticism of large-scale energy-economic models, this sec-
tion presented a detailed representation of the U.S. electricity sector and validates the model’s
predictive ability against observed data. The independent utilization-only model as well as joint
utilization-expansion model are validated against historical trends and appear to perform reasonably
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Figure 11: Technology Mix Validation: Wind Capacity Expansion from 2007–2018

Notes: Model results for each year are changes from the 2007 baseline. The correlation is 0.974.

Figure 12: Technology Mix Validation: Solar Capacity Expansion from 2007–2018

Notes: Model results for each year are changes from the 2007 baseline. The correlation is 0.967.

18. The EIA AEO projections contain embedded assumptions on the evolution of end-use efficiency and demand-side
management, which are therefore treated as exogenous in these simulations. This would likely over-estimate total emissions,
especially in the case of CPP implementation.

well, supporting the credibility of a BAU projection of future sector-wide emissions using this
empirical model.

V. CO2 EMISSIONS FROM ELECTRIC POWER IN 2030 AND CPP TARGETS

A. A Business-as-usual Scenario for 2030

The BAU scenario projects the U.S. electric power sector to 2030 using projections for
total generation needs using the most recent EIA AEO (EIA, 2015a)18, population (US Census),
income per capita (World Bank), and labor costs as a proxy for O&M costs (BLS, 2015). With the
exception of large shocks, such as the U.S. economic recession discussed in the previous section,
growth rates for these exogenous projections have been historically stable.

Given recent fluctuations in fuel prices resulting from the shale gas boom and the more
recent decline in oil prices, steady prices going forward could arguably be a satisfactory assumption.
Furthermore, empirical evidence on endogenous technological change suggests that the price of
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19. Online Appendix E analyzes the sensitivity of this simulation model to gas price and coal power retirement rates.

fuels remain fairly constant in real terms over the long-term, albeit with sometimes high year-to-
year variability (Stuermer and Schwerhoff, 2013). We also note that, in 2016, gas futures reached
an 17-year low (Buurma, 2016), indicating inexpensive gas is expected to stay relatively low.
Therefore, fuel prices are shifted to 2014 levels (i.e. a –45.81% shift in real gas price per MMBTU
from 2007) to represent the new normal in gas prices. The shifts, as opposed to shocks, maintain
the supply response expected from increased gas demand.

Taxes and technology are also shifted to 2014 levels to represent the BAU polices. Current
federal investment subsidies for wind and solar (i.e. 30% capital subsidy) are included in the baseline
simulation. Because technology is assumed to remain at 2014 levels, the results may be conservative
estimates for relatively new technologies (e.g. wind and solar) that are improving at a faster rate
than traditional technologies. Furthermore, new coal and oil capacity are assumed to not expand
due to regulatory constraints (e.g. mercury and carbon regulations). The economic rate of retirement
for coal plants is very difficult to predict in practice. This non-expansion assumption effectively
makes net coal power capacity exogenous such that the rate of retirement observed following the
fall in gas prices continues at a steady rate to 2030. The retirement decision is notably hard to
predict, and there are very few observations against which to calibrate the price responsiveness of
retirements. Controlling for coal capacity is well-suited for these BAU simulations because we
assume steady gas prices at 2014 levels. However, the exogeneity assumption limits our ability to
analyze other gas price scenarios (e.g. a return to pre-shale boom prices).19 Nuclear and hydroelectric
capacity are assumed to not expand due to regulatory and resource constraints, respectively. These
BAU policies should drive the result toward the CPP emissions target; although, it is uncertain how
and if these might continue in the long-term future.

B. Insights from the Analytical Model

Recall in the simple analytical model we were able to draw several insights about how
returns to capacity, and thus capacity expansion, are affected by the gas price shock via model
parameters. In the interest of providing a more accurate representation of the U.S. electricity sector,
the empirical model introduced a more complex technological substitution (i.e. base and peak nests)
and capacity expansion (i.e. discrete choice for additions and economic lifetime for retirements);
these add detail to the single elasticity of substitution, and elasticity of supply of capacity,t kσ lt

used in the analytical framework. Furthermore, the simplifying assumptions (e.g. infinite supply
elasticity for non-fuel and non-capital inputs) are relaxed and other prices, demands, and techno-
logical change are shifted simultaneously.

Still, we can use the response of returns to capacity from the fuel price shift from [12],
termed X, to add insight into the empirical moving forward.

g D t gX g + σ (1–X )s sX = (19)
g v D v t g i v sX h g + h σ (1–X ) + σ (1– h ) + ls ks ks s s ks s

Table 4 focuses on GasBL where most of the substitution occurs and shows the relevant
parameters that comprise X, the gas price shift, utilization, and net capacity expansion for the 2007
base year, 2018 (the last year of the joint validation), and the results for 2030 (discussed in detail
later).
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Table 4: Analytical Model Parameters Relevant for Gas Price Shock Populated with Values
from the Empirical Model

Notes: Grayed cells do not change with time.

Figure 13: Percentage Change in Capacity Utilization in 2018 and Extended to 2030

First, we observe that the fuel to capacity ratio, , is increasing over this period,h /hft kt

indicating that utilization per unit of capacity is increasing; in fact, increases over 55%. In 2030,ĉt

GasBL utilization increases by over 50% which translates to an increase in capacity factor to from
41% to 62%, surpassing the annual capacity factor of coal plants by 2018. This short-run response
stays fairly constant to 2030—depressed only slightly from additional expansion. Second, we note
that the elasticity of supply, , increases with time. This is because both total generation needsklt

and total retirements increase with each year from the base year and must be filled with additional
capacity; that is, capacity is more elastic over a longer time period. Third, recall that the sensitivity
of capacity returns to the gas price shock is based on the ability of gas power to expand (i.e. current
market share and ability to substitute). We see tremendous growth in the share of GasBL in base
load electricity production, , increasing from 9.4% to 21.4% in 2018. As a result of this dimin-blXt

ished market opportunity (greater generation share) and an increasing supply elasticity, the fuel
price response, X, declines about 31% by 2018. This trend continues to 2030; therefore, we would
expect capacity expansion from 2018 to 2030 to increase, albeit at a slower rate than from 2007 to
2018 due to a decreasing response. This is what we will observe in the table for GasBL and the
following results.

C. Results

Looking back at the validation results, and because we are using the same fuel price shifts
as in the validation, it is reasonable to assume that most of the expansion in the 2030 baseline will
also come from the gas, solar, and wind. Furthermore, because capacity utilization changes arise
from the dispatchability of technologies and the technological substitutability of the sector, which
do not change in time, we can hypothesize that capacity utilization in 2030 should roughly match
those from validation exercises which use identical fuel prices shifts. Figure 13 shows that the short-
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Figure 14: The Shares of Additional Nameplate Capacity for 2007—2018 and for 2007—
2030 are Roughly Similar

Notes: Areas to scale.

run utilization changes in 2030 are similar to 2018 (the last year of the validation exercises), because
of the identical fuel shock and utilization parameters. However, sector-wide utilization declines due
to continued expansion in non-dispatchable wind and solar technologies.

Figure 14 shows capacity expansion for each technology. As expected, the rate of capacity
expansion for gas power, namely GasBL declines. Wind and solar maintains strong growth due to
the investment tax credit that is assumed to remain to 2030. Wind and solar combine for about 20%
of total generation in 2030, which pushes down utilization across all dispatchable technologies,
shown in Figure 13.

As we observed in the validation exercises in the previous section, there is strong switching
from coal power to gas power. Figure 15 shows carbon emissions by source in 2030 compared to
2005. Emissions from coal and oil are reduced by 44% and 59%, respectively, and are partly offset
by an 84% increase in emissions from combusting gas. Wind and solar grow to about 20% of total
generation, which is large compared to other projections that phase out wind and solar investment
subsidies. CO2 emissions from other power technologies are negligible.

A key driver of the reduction in sector-wide emissions is from changes in coal power
utilization and retirements. While the utilization mechanism is fully endogenous and validated in
previous sections, coal power retirements are treated exogenously. The rate of retirement is cali-
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Figure 15: Contributions to Total CO2 Emissions by Fuel-type in the United States in 2005
and the BAU Scenario for 2030

20. Online Appendix E shows that the results are sensitive to the rate of coal power plant retirements.

brated to observations after the decline in gas prices—providing a reasonable estimate for the BAU
simulation undertaken here.20

Interestingly, the baseline scenario projects that, with no CPP policies, the CPP goals will
almost be met by 2030 under the BAU scenario (26.0% of the 32.0% target). Changes in utilization
contributes 11.8% of the total decline in CO2 emissions while expansion contributes the remaining
14.2%. Only a relatively small remainder must be achieved through further incentives through
policy interventions. The equivalent cost of carbon implied by the CPP is only about $12 per metric
ton of CO2. That is, a tax of $12 per metric ton of CO2 is required to meet the full 32.0% target—
much less than the social cost of carbon reported by the EPA, which is $50 per metric ton of CO2

(based on 3% discount rate average in 2030 in EPA (2015b)). If we impose a $50 per metric ton
of CO2 tax on top of the BAU assumptions reported above, then the U.S. electricity sector reduces
emissions by nearly 48%—both a stricter and more ambitious target.

While the BAU scenario here considers mercury standards, expectations of future coal
regulations, 30% capital subsidies for solar and wind, and constant natural gas prices (also up to
2030). Other BAU studies, especially bottom-up models, are capable of integrating a more detailed
set of capacity- and region-specific policy (e.g. loan guarantees, state renewable standards). Still,
many of the departures in the projections can be attributed to basic modeling assumptions, especially
the assumption of equilibrium in the base year.

As expected, the 26.0% reduction projected here is larger than other BAU cases in both
bottom-up and top-down literature. Bushnell et al. (2014) use a bottom-up, partial equilibrium model
to analyze differences between cap-and-trade and rate-based policies in a handful of western U.S.
states. Their BAU case estimates a 10% increase in emissions from 2007–2030 due to increasing
demand with the existing technological mix. The partial equilibrium model is calibrated to 2007
and does not consider increasing returns to capacity due to utilization changes, which would drive
expansion toward gas and away from coal. The EPA BAU projection used for the regulatory analysis
of the CPP is similar, but projects a 17% decline because they begin their analysis in 2013, when
the reductions are already 14.6% below the 2005 baseline (as opposed to beginning analysis in
2007 as in Bushnell et al. (2014)). The additional decline in the EPA model seems to be driven by
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21. The alternate projections of CO2 emission in 2030 described above are largely based on emissions in the base year,
and because of constant reductions in CO2 emission in the power sector (see Figure 1), the 2030 projections also decrease.
Through base year revisions, these projections seem to be converging to the results of the BAU simulation here. The model
captures the interdependency between short-term utilization changes toward a longer-term expansion via returns to capacity
and could have made the projection shortly after the decline in gas prices rather than constant updates of the base year.

22. Online Appendix E documents this comparison simulation.

assumptions on decreasing renewable costs rather than by additional fuel switching driven from
increasing returns to gas capacity. Similarly, the No CPP case in the EIA 2016 Annual Energy
Outlook projects a rise in emissions from 2015, where emissions are already 25.6% below 2005
levels, to 23.6% below 2005 levels in 2030, driven by increasing demand with a roughly similar
electricity mix.21 When the (higher) AEO2016 projected gas prices in 2030 are used in the model,
along with an appropriately slower retirement rate of coal, the model projects slightly less reduction
in emissions, 25.6%. This figure is closer to the EIA AEO2016 results.22 This sensitivity echoes
the need for further research aimed at understanding coal plant retirement decisions in response to
returns to capacity, regulation, and fuel prices. Corresponding with the results found in our results,
the EIA reports that imposing detailed regulations embedded in the CPP will drive emissions well
below the 32.0% target (Martin and Jones, 2016). The EIA analysis also phases-out wind and solar
investment credits, whereas the BAU assumes the same credits are extended to 2030. These two
points, taken in context of the results shown here, indicate that the CPP may have an even larger
impact on emission reduction.

As for top-down models’ analyses of the BAU case, Cai and Arora (2015) use a CGE
model with several generating technologies which substitute imperfectly, capturing a combined
utilization and expansion effect. However, since the model assumes the sector begins in equilibrium,
sustained returns in gas capacity expansion are neglected, eliminating any continuity in capacity
expansion. The 2030 baseline predicts an 11% decrease in CO2 emissions from 2005, driven pri-
marily by assumptions on improving technology. Additionally, characteristic of most top-down
models, the model does not consider important aspects of electricity production (e.g. base versus
peak markets), is not validated, and includes technologies that do not currently exist in meaningful
scale (e.g. carbon capture and storage). In both cases, there is little evidence that the current mix
of technologies in the production of electricity resembles the equilibrium mix, which the studies
generally assume as the starting point. Reductions in emissions in these and other studies are driven
primarily by technological change (e.g. declining renewable cost, improving heat rates), whereas
the validated model presented here projects a much larger decline in sector-wide emissions driven
by increasing returns to gas capacity expansion. This implies that the 26.0% reduction may even
be a conservative estimate.

A complete assessment of the relative merits of the different methodologies for modeling
the power sector would entail an in-depth model comparison exercise, which is well beyond the
scope of the current paper. However, we can conclude that by assuming initial equilibrium, ignoring
the continued long-run substitution resulting from increased returns to capacity, and ignoring the
interdependency of utilization and expansion of electricity generation capacity, previous studies
have likely over-predicted BAU power sector emissions.

VI. CONCLUDING REMARKS

This paper developed a new approach to projecting the power sector’s response to today’s
inexpensive natural gas prices. The analytical model, combined with parameters derived from the
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empirical study of the U.S. electricity sector, shows that the new normal in gas prices drives sub-
stitution to gas power in the short-run by increasing utilization. Increased utilization drives expan-
sion in gas capacity over the long-run due to increasing returns to capacity. However, the rate of
expansion slows down as supply elasticity increases and increasing penetration reduces expansion
opportunities Overall, the BAU projection to 2030 shows that, given the new normal in gas prices,
26.0% of the CPP target of 32.0% reductions will be met without any additional policy intervention.
This result is higher than other studies and may even under-estimate possible reductions, because
both end-use efficiency or demand-side management are embedded in the EIA 2030 generation
projection which is treated exogenously. As a result, some may conclude that the CPP is, politically-
speaking, a ‘perfect policy’, where achievement of the policy objective requires little enforcement.
The alternate perspective would say that the policy objective could be made much stronger. In fact,
imposing the EPA’s social cost of carbon (i.e. $50 per metric ton of CO2), would imply a stricter
target of 50% CO2 reductions in the U.S. electricity sector by 2030 as compared to the 2005 baseline.
While this work focuses on contributions to electricity generation from capacity utilization, expan-
sion, and their interdependency, Ang (2004) surveys decomposition methods that could highlight
a deeper set of drivers to better inform specific policymaking.

An important limitation of this work is the assumption of a constant economic retirement
rate of coal power. Retirements are expected to be sensitive to changes in the returns to capacity,
regulations and fuel prices. Future research should focus on developing a better understanding of
the determinants of coal plant retirements decisions.

There are also important concerns about achieving the CPP target primarily through gas
power. Several articles have shown, and this one supports, that inexpensive natural gas, slows the
penetration of renewables (e.g. Shearer et al. 2014). Other studies have shown that the economy-
wide life-cycle GHG emissions may not be impacted at all by switching from coal to gas power
due to large leakage rates throughout the gas supply chain and potency of gas as a GHG emission
(Wigley, 2011; Howarth et al. 2011; Brandt et al. 2014); although, debate remains, especially if
fuel switching occurs primarily in electricity as indicated here (Alvarez et al. 2012; Cathles et al.
2012). Thus, if the objective of the policy is to reduce GHG emissions in the United States, rather
than just CO2 in the electricity sector, the BAU projection appears less attractive than on initial
inspection.

In closing, there are a number of foreseeable events that could question whether current
gas prices are truly a new normal. The first liquefied natural gas exports from the continental United
began in early 2016. While still in its infancy, closer integration with global markets may drive up
U.S. gas prices and offset some of the shifts shown here. There are also concerns about the steepness
of the unconventional gas supply curve. Will inexpensive gas extraction now give way to harder
and harder to find shale beds? These could have important impacts on the CPP BAU scenario
presented here.
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