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ARTICLE INFO ABSTRACT

Keywords: Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify
Water use improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water
Rainfed requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water
Crop model availability and crop yields for economic analyses. Many simulations of crop growth and development,

Decision support
Deficit irrigation
Schedule

especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation
dates and amounts. However, these algorithms are not well suited for water limited regions because they have
simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water.

To address this constraint, a new modeling framework to simulate agricultural production in water limited
areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of
growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage
specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in
Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at
different growth stages and then to test the hypothesis that water productivity calculated using simplistic
irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on
yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages,
IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered
treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second
experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to
non-optimized irrigation schedules in water restricted scenarios. For example, the mean WP across 38 years of
maize production was 1.1 kgm™> for non-optimized irrigation schedules with 50 mm of seasonal available
water and 2.1 kg m ™3 with optimized irrigation schedules, a 91% improvement in WP with optimized irrigation
schedules. The framework described in this work could be used to estimate WP for regional to global
assessments, as well as derive location specific irrigation guidance.

1. Introduction

Global factors such as population growth and climate change
continue to put increasing stress on the agricultural system and drive
increased irrigation demand in regions with unsustainable water
supply. This is especially evident in areas that rely heavily on ground-
water resources (Famiglietti, 2014; Scanlon et al., 2012). Although
human water use is only about 10% of the maximum renewable
freshwater available in the world, the uneven distribution of water
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resources in time and space make certain areas particularly susceptible
to water shortages (Oki and Kanae, 2006). These include large
agricultural areas in the states of Texas and California (Roy et al.,
2012) that have experienced devastating droughts in recent years
(Griffin and Anchukaitis, 2014; Nielsen-Gammon, 2012). Agriculture,
the second largest water use sector in the US after thermoelectric power
(Maupin et al., 2014), and the largest user of water resources world-
wide (Hoekstra and Mekonnen, 2012), is strongly affected by water
shortages. For example, the impact of the 2015 drought on California’s
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agricultural sector is estimated as 2.7 billion dollars (Howitt et al.,
2014), and the 2012 drought produced an estimated loss of 31.5 billion
dollars across the U.S. largely due to harvest failure for maize, sorghum,
and soybean (NCDC, 2016). These drought events also reduce ground-
water recharge rate and increase pressure from irrigated farms on major
aquifers (Famiglietti, 2014), creating challenges for groundwater
managers and farmers alike. Process based cropping system models
can provide insight on agricultural water management strategies at
field to regional scales.

Cropping system models have been used to understand how
economic trends, agricultural policies, and water use interact (de
Fraiture, 2007); to quantify the global yield gap due to nutrient and
water management (Mueller et al., 2012); and to project regional yields
in response to climate change (Elliott et al., 2014a; Estes et al., 2013).
The Decision Support System for Agrotechnology Transfer (DSSAT;
Hoogenboom et al., 2012; Jones et al., 2003) is a valuable tool for
projecting agricultural yields in a changing climate. It has recently been
used for large-scale simulations of cropping systems both gridded
(Elliott et al., 2013) and as part of crop model ensembles (Asseng
et al., 2013; Elliott et al., 2014a, 2014b), i.e. multiple models simulat-
ing the same weather and management data set. For example, Elliott
et al. (2014a) compared water supply projections from ten global
hydrologic models, such as Water — Global Assessment and Prognosis
(WaterGap; Do6ll and Siebert, 2002) and Water Balance Model (WBM;
Fekete et al., 2002), and water demand projections from six global
gridded crop models. They concluded that 20-60 Mha of irrigated
cropland worldwide may have to switch to rainfed management by the
year 2100 because of water shortages.

Effective water management decisions may help farmers and policy
makers cope with water scarcity in drought prone and water limited
areas by maximizing yield per unit of water applied. A critical method
for managing water limitations at the farm level is through deficit
irrigation, i.e. the application of water below crop water requirements
(Fereres and Soriano, 2007). Crops under deficit irrigation will
experience some level of water stress during the season and often have
lower yields than fully irrigated plants. Multiple studies show that
targeting irrigation applications to the most sensitive growth stages
increases crop productivity per unit of water applied (Geerts and Raes,
2009). In northeastern Colorado, for example, Fang et al. (2014)
showed, using the Root Zone Water Quality Model (RZWQM), that in
water limited scenarios high corn yield and water use efficiency can be
achieved if the crop is fully irrigated in the vegetative stages and deficit
irrigation takes place in the reproductive stages. A key step in the
investigation of deficit irrigation with models is the generation of
optimized deficit irrigation schedules. For example, a popular approach
to evaluate the potential of deficit irrigation strategies is the use of crop
water productivity functions (Geerts and Raes, 2009). Water produc-
tivity expresses the relation between marketable yield and water use.
When cropping system models are used to generate crop water
productivity functions, irrigation strategies are often based on soil
water depletion and expert knowledge (Garcia-Vila et al., 2009; Geerts
et al., 2009; Ma et al., 2012), or maintaining irrigation frequency and
changing application amount based on percentage crop water demand
(Saseendran et al., 2015). More recently, statistical approaches (Geerts
et al., 2010) and optimization algorithms (Kloss et al., 2012;
McClendon et al., 1996; Schiitze et al., 2012) have been proposed to
generate these irrigation schedules. Further research is needed to
develop computationally inexpensive approaches to generate opti-
mized, unbiased, and reproducible irrigation schedules and crop water
productivity functions in water limited scenarios.

In this paper, a new irrigation scheduling algorithm was developed
for DSSAT models that improves on the existing algorithm by explicitly
restricting water availability and allowing growth stage specific para-
meters. Growth stage specific parameters, as opposed to seasonal
parameters, are used to optimize water use by irrigating only when
crop yield is most sensitive to water stress. This new algorithm was then
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used for two computational experiments. In the first experiment, the
sensitivity of irrigation water use efficiency to different irrigation
schedules was evaluated. In the second experiment, we tested the
hypothesis that non-optimized deficit irrigation strategies underesti-
mate crop water productivity in water limited scenarios relative to
optimized deficit irrigation strategies.

2. Materials and methods
2.1. Model description

All the simulations described in this work were performed using a
customized version of DSSAT v4.6 (Hoogenboom et al., 2015). DSSAT is
a point-based biophysical model that runs on a daily time step and
simulates crop growth and development in a hectare of land as a
function of weather, detailed soil profile, cultivar specific physiological
parameters, and farm management. DSSAT tracks carbon, nitrogen,
water, and energy budgets. The software simulates dozens of crops
using crop specific models. Most crop specific models implemented in
DSSAT derived either from CERES-Maize (Jones et al., 1986) or
SOYGRO (Wilkerson et al., 1983). The former usually are referred as
CERES models, e.g. CERES-Sorghum, CERES-Wheat, and CERES-barley
(Lopez et al., 2017; Otter-Nacke et al., 1991; Ritchie and Otter, 1985;
White et al., 2015), and the latter as CROPGRO models, e.g. CROPGRO-
Peanut, CROPGRO-faba bean, and CROPGRO-tomato (Boote et al.,
2012, 2002; Suriharn et al., 2011). Additional details on DSSAT can be
found in Jones et al. (2003).

The DSSAT v4.6 automatic irrigation algorithm depends on one
state variable, the volumetric water content (VWC) of a hectare of land
within a determined soil management depth (IMDEP). Irrigation takes
place when VWC reaches a lower threshold (ITHRL; Fig. 1). This
threshold is specified by the user as percentage available water holding
capacity (AWHC), which is the drainage upper limit minus permanent
wilting point (Gijsman et al., 2002), and then converted back to VWC
by the model based on location specific soil properties. The irrigation
amount may be fixed or based on an upper water holding capacity
threshold (ITHRU). This work expands the existing DSSAT automatic
irrigation scheduling algorithm to simulate crop growth in water
limited environments automatically. In the past this could only be
done manually.

2.2. Improved irrigation algorithm

The DSSAT v4.6 automatic irrigation algorithm was expanded in
two fundamental ways (Fig. 2). The new algorithm allows users to set a
restriction on the amount of water available for irrigation (AVWAT)
during the growing season or during specific growth stages. Therefore,

DUL
. v
ITHRU
Irrigation 100 %
Amount AWHC
ITHRL &
—
_ LL v

Fig. 1. Diagram illustrating the parameters used to schedule irrigation events based on
soil water depletion in DSSAT v.4.6. in the automatic mode. The rectangle represents the
water available to the plant within a soil column with length equal to the user specified
management depth. The dashed space represents the irrigation amount when the soil
reaches ITHRL. ITHRU: Irrigation threshold upper limit. ITHRL: Irrigation threshold
lower limit. DUL: Drainage upper limit. LL: Lower limit or wilting point. AWHC: Available
water holding capacity (DUL — LL).
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Fig. 2. Forrester diagram (Forrester, 1961) of automatic irrigation algorithm. (a) Irrigation algorithm as implemented in DSSAT v4.6. (b) Modified irrigation algorithm. t: time; VWC:
volumetric water content; ET: evapotranspiration; AVWAT: available water for irrigation during the growing season; GS: growth stage.

in the new model the source of water for irrigation is within the system
boundaries and tracked by the state variable AVWAT. Second, it allows
users to set growth stage specific irrigation parameters by setting upper
and lower soil moisture irrigation thresholds. Combined, these two
improvements permit the investigation of deficit irrigation strategies.
Essentially, the new automatic irrigation scheduler allows the user to
set different irrigation criteria based on the growth stages most
susceptible to water stress and allows the user to set a limitation on
the amount of water available during the season.

The new automatic irrigation algorithm (Fig. 3) combines user
inputs and state variables from the various crop model components to
estimate irrigation date and amount based on daily VWC calculations. It
is a FORTRAN subroutine called by the DSSAT main program as part of
the management module, and is therefore accessible to all crop modules
in DSSAT. It is designed with significant flexibility to accommodate a
range of modeling scenarios including water limitation over the whole
season, during one growth stage, or during a set of growth stages, and
supports two different methods to determine each irrigation application
date and amount, user-defined or calculated based on soil water
content. Should the user not set a seasonal water limitation, water
supply is assumed to be unlimited. Alternatively, the user may decide to
have a water limitation but not use a growth stage based irrigation
strategy. In such case, the model will program all irrigations based on a
single VWC threshold throughout the season until available water is
depleted. Finally, the user can set a water limitation only during
specific growth stages and draw water from an unlimited supply in
others. Growth stages may widely differ among crop models. In this
work, CERES-Maize and CROPGRO-Soybean growth stages were eval-
uated (Table 1), however, the new irrigation functionality can be used
in all crop models available in the DSSAT platform.

2.3. IWUE sensitivity to growth stage based irrigation

A sensitivity analysis was conducted to quantify yield and irrigation
water use efficiency (IWUE) when irrigating only during a single
growth stage. The site for both, maize and soybean simulations, was
the University of Florida Agronomy Farm in Gainesville, Florida (29°
38” 3” N, 82° 21; 44’ E). The soil, cultivar, and environmental
conditions were those described by Bennett et al. (1989, 1986) and
Wilkerson et al. (1983) for maize and soybean, respectively. Maize
cultivar ‘McCurdy 84AA’ was planted on February 26th 1982. In the
soybean experiment, cultivar ‘Bragg’ was planted on June 15th 1978.
The soil was a Millhopper fine sand.

The sensitivity analysis evaluates deficit irrigation strategies devel-
oped by limiting water applications to specific growth stages (Table 2).
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The water losses and yield savings of each of these strategies were then
quantified by comparing the outputs of these simulations with the
outputs of a well-watered (WW) simulation. Simulations were con-
ducted using the same irrigation parameters for soybean and maize. For
the WW simulations, the irrigation management depth (IMDEP) was set
at 30 cm and irrigation took place when the water holding capacity
threshold ITHRL was equal to or below 80% AWHC. Irrigation amount
was calculated so that the soil was refilled to 100% AWHC within
IMDEDP. For each of the evaluated deficit irrigation strategies, irrigation
was applied only during a specific growth stage, setting ITHRL at 80%
AWHC and ITHRU at 100% AWHC, the crops were not irrigated for the
rest of the season. For all simulations, irrigation application efficiency
was set at 85%, assuming an efficient irrigation system.

Irrigation water use efficiency was calculated after Howell (2001)
using the following equations:

Y

IWUE = Y=
W

Where Y; represents the irrigated yield, Y, is the non-irrigated yield,
and W is the amount of water used for irrigation during the season in
the irrigated treatment.

2.4. Optimization

The objective of the optimization is to identify sets of irrigation
parameters that produce the maximum yield given a seasonal water
limitation. The parameter ITHRL, that affects irrigation frequency and
amount, was optimized for each of the six growth stages defined in
Table 1 for maize. The target objective model output was simulated
grain yield. The experiment described by Bennett et al. (1989, 1986)
was simulated using 38 years of weather data (1978-2015) for
Gainesville, Florida. For each year, simulated yield was optimized for
eight different seasonal water restrictions (50, 100, 150, 200, 250, 300,
350, and 400 mm).

In order to find optimized parameter sets, three different heuristic
optimization algorithms were evaluated: global differential evolution
(Mullen et al., 2011), generalized simulated annealing (Xiang et al.,
1997), and a simple evolutionary algorithm (Wagon, 2004). The
algorithms were implemented in R v. 3.2.3 (R Core Team, 2016) using
packages DEoptim (Mullen et al., 2011), GenSA (Xiang et al., 2012),
and adagio (Borchers and Borchers, 2012), respectively. For each
growth stage, ITHRL was set at a minimum of 5 and a maximum of
100% AWHC. Other parameters passed to the R functions were:
F = 0.8, CR = 0.9, and itermax = 10 to DEoptim, maxcall = 300 to
GenSA, and N = 21 to simpleEA. Summarized briefly, F is a differential
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Fig. 3. Flow chart of irrigation subroutine. GS: Growth Stage, ITHRU: upper water holding capacity threshold, ITHRL: lower water holding capacity threshold.

Table 1

Growth Stages evaluated in the sensitivity analysis.

Crop DSSAT Code” Naming Convention” Duration (days) Description
Maize GS014 12 Start of simulation.®
GS009 VE 18 Emergence.
GS001 5 End of juvenile phase.
GS002 42 Floral initiation.
GS003 R1 11 Some visible silks outside the husks.
GS004 R2 41 Kernels are white on the outside and resemble a blister in shape.
Soybean GS014 5¢ Start of simulation.
GS001 VE 40 Emergence.
GS005 R1 20 One flower at any node.
GS006 R3 26 0.5 cm pod at one of the 4 upper nodes with unrolled leaves.
GS009 R6 40 Full size green beans at 1 of 4 upper nodes with unrolled leaves.

@ Growth stage code used in DSSAT v4.6.
b Naming convention for maize (Richie et al., 1982) and soybean (Fehr et al., 1971) growth stages.
¢ Simulation was started one day prior to planting, using reported initial conditions.

4 Mean soybean growth stage duration. Individual simulations may be up to one day different from the mean. Growth stage duration did not change for maize across the sensitivity

simulations.
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Table 2
Treatments used to simulate the sensitivity of irrigation water use efficiency (IWUE) to
growth stage based irrigation.

Maize
Treatment Well-Watered Growth Stage
GS009 GS001 GS002 GS003 GS004
ww X X X X X
GS009 X
GS001 X
GS002 X
GS003 X
GS004 X
Soybean
Treatment Well-Watered Growth Stage
GS001 GS005 GS006 GS009
ww X X X X
GS001 X
GS005 X
GS006 X
GS009 X

weighting factor which typically takes values between 0 and 1, CR is
the crossover probability, also between 0 and 1, itermax and maxcall
are the maximum number of times that the optimization function is
called in R, and N is the number of random points introduced each
generation. More details about the optimization algorithms and para-
meters can be found in the references above.

Optimized irrigation schedules were compared with a non-opti-
mized irrigation approach using the same eight seasonal water restric-
tions described above. The non-optimized approach uses the same
irrigation scheduling parameters used in the WW simulations until
water runs out, with no adjustments on the irrigation strategy based on
the water limitation. As in the optimization simulations, the non-
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Fig. 5. Distribution of simulated seasonal maize grain yield across 38 years of climate
data (1978-2015) in Gainesville Florida. Eight irrigation restriction scenarios were
evaluated with different Seasonal available water. Three irrigation methods were
simulated: rainfed, non-optimized (irrigation application with parameters
ITHRL = 80% and ITRU = 100% until available water is depleted), and growth stage
optimized (Optimized ITHRL calculated with global differential evolution algorithm).
Asterisks indicate statistically significant differences at P < 0.05 (*), < 0.01 (**),
and < 0.001 (***).

optimized approach simulated 38 years (1978-2015) of corn produc-
tion in Gainesville Florida. Weather data from this location was
obtained from the NASA Climatology resource for agro climatology
(available at http://power.larc.nasa.gov/cgi-bin/agro.cgi) and the
National Climatic Data Center (NCDC). Non-optimized irrigation sche-
dules were obtained by setting parameter ITHRL at 80% AWHC and
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Fig. 4. Aboveground biomass (kg ha™!), grain yield (kg ha™'), and seasonal irrigation (mm) amount of maize and soybean under various irrigation regimes (a, b). Irrigation water use
efficiency (c, d). Each yield bar represents a simulation were irrigation was applied only at the specified growth stage.
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Table 3

Agricultural and Forest Meteorology 243 (2017) 84-92

Optimized seasonal maize yield (kg ha™') and computing time (s) across 38 years of climate data (1978-2015) in Gainesville Florida using different optimization algorithms.

Algorithm Seasonal Water Available Elapsed time® (s)

50 mm 100 mm 150 mm

median IQR* median IQR median IQR median IQR
Global Differential Evolution 5920 4906 9663 3045 11308 2417 93.6a" 9.1
Generalized Simulated Annealing 5750 4839 9470 3228 11334 2338 42.3b 5.7
Simple Evolutionary Algorithm 5920 5357 9408 3205 10950 2438 33.3b 9.7

@ Interquartile range.
> Numbers followed by the same letter within a column do not differ.

Table 4

Mean yield, evapotranspiration, and water productivity for maize in different water availability scenarios. Asterisks indicate statistically significant differences at P < 0.05 (*), < 0.01

(**), and < 0.001 (***).

AVWAT? (mm) Yield (kg ha™!) Evapotranspiration (mm) Water Productivity (kg m~%)
Optimized Non-optimized Optimized Non-optimized Optimized Non-optimized
50 6214 4034""" 393 383 1.5 1.0
100 9393 4575™"" 438 424 2.1 117"
150 10784 6069 478 458 2.3 1.3
200 11417 8895""" 509 493 2.2 1.8
250 11654 10820° 530 521 2.2 2.1
300 11682 11468 538 539 2.2 2.1
350 11682 11657 543 547 2.2 2.1
400 11682 11672 540 549 2.2 2.1

@ Seasonal Available Water.

ITHRU at 100% AWHC throughout the season. Water productivity (WP)
was calculated by dividing grain yield by actual evapotranspiration.

2.5. Statistical analysis

The statistical analyses were conducted in R (R Core Team, 2016).
The null hypothesis was evaluated using the Kruskal and Wallis rank
sum test, and mean separation was performed using post-hoc pairwise
multiple comparison test according to Nemenyi (Nemenyi, 1962; Sachs,
1997).

3. Results and discussion

A new automatic irrigation algorithm for DSSAT was developed and
used to: 1. simulate the sensitivity of IWUE to growth stage based
irrigation, and 2. optimize yield for eight water restriction scenarios.
Maize IWUE ranged between 2.1kgm™2 and 7.9 kgm ™3, soybean
IWUE ranged between 0.09 kg m~2 and 1.3 kg m~3 (Fig. 4). There
were significant differences in yield between optimized and non-
optimized simulations. For example, across eight seasonal available
water scenarios simulated for 38 years using historic weather data, the
optimized simulations produced on average 5649 kgha™! of grain
more than the non-optimized simulations in the 100 mm seasonal
available water scenario (Fig. 5). Because of these yield differences,
water productivity (WP) was significantly higher in the optimized
simulations with low seasonal available water, i.e. between 50 and
200 mm (Table 4).

3.1. Irrigation water use efficiency sensitivity to growth stage based
irrigation

Irrigation water use efficiency was higher than the well-watered
treatment for reproductive stages R1 (GS003) in maize and R3 (GS006)
in soybean (Fig. 4), consistent with Bustomi Rosadi et al. (2007) and
Kirda et al. (1996), who found that prioritizing the reproductive growth
stages at the expense of mild stress during vegetative growth can
improve IWUE. This suggests that prioritizing irrigation at specific

89

growth stages might improve IWUE in both crops. IWUE in maize was
also high when irrigation took place during vegetative stages GS009
and GS001 (Fig. 4). However, rather than a physiological difference
between maize and soybean, this is explained by the contrasting rainfall
patterns across maize and soybean growing seasons during the first
45 days after planting (DAP). While both maize and soybean growing
season cumulative rainfall 45 DAP was abundant (331 mm for maize
and 271 mm for soybean), rainfall events were more frequent during
the soybean growing season compared to the maize growing season (24
rainfall events compared to 15). Because the water holding capacity of
these sandy soils is so low (approximately 50 mm to a 1 m soil depth),
frequent rainfall events are more effective in preventing drought stress
than abundant rainfall, as most of the water will be lost to drainage. The
results of this sensitivity analysis highlight the complex interactions
between rainfall frequency and amount, and irrigation scheduling.
Irrigation amounts and yields depend on the timing of the irrigation
application, the growth stage at which the plant is most susceptible to
water stress, and the frequency and volume of the rainfall events during
the growing season. Therefore, simply understanding at which stages
crops are more susceptible to drought stress does not suffice to derive
optimized deficit irrigation schedules.

3.2. Optimized water limited yield

To calculate grain yield with an optimized irrigation schedule, three
optimization algorithms were used. There were no significant differ-
ences in the 38-year median grain yields across algorithms (Table 3).
However, while not a limitation in the context of this study, global
differential evolution required significantly more computing time than
the generalized simulated annealing and the simple evolutionary
algorithm (Table 3). Therefore, for larger assessments in time, space,
or scenarios, where computing time is a limitation, generalized
simulated annealing and the simple evolutionary algorithm should be
preferred.

The potential yield difference between optimized and non-opti-
mized irrigation strategies were calculated to quantify the potential
benefits of using optimized deficit irrigation schedules. The non-
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available. Non-optimized: irrigation application with parameters ITHRL = 80% and
ITRU = 100% throughout the season. Optimized: Optimized ITHRL calculated with
global differential evolution algorithm. Asterisks indicate statistically significant differ-
ences at P < 0.05 (¥), < 0.01 (**), and < 0.001 (***).
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optimized irrigation strategy used a single soil water threshold to
schedule irrigation events throughout the season and across treatments
until water ran out. The yield difference between optimized and non-
optimized irrigation schedules was highest for the 100 mm of seasonal
available water scenario, and relatively low in seasonal water avail-
ability scenarios of 300 mm or higher. Based on the results of this study,
it can be inferred that optimized deficit irrigation is particularly
effective in water restriction scenarios between 50 and 200 mm of
water for this location. Summed over the growing season, optimized
irrigation schedules use less water than non-optimized schedules each
growth stage (Fig. 6), highlighting that a simple growth stage based
deficit irrigation approach is not sufficient to optimize yield in water
restricted scenarios if rainfall and irrigation frequency and amount are
not considered.

3.3. Applications of optimized irrigation schedules

A potential application of optimized irrigation schedules from this
algorithm is the generation of novel irrigation strategies adapted to
farmers’ local conditions. Unlike previous methods (e.g. Geerts et al.,
2010), optimized irrigation recommendations derived using the algo-
rithm described in this article do not require an intermediate statistical
analysis step. In addition, parameter bounds can be used to prevent the
model from scheduling irrigations that cause adverse consequences due
to factors not considered by the model. For example, the model does not
simulate lodging, and high volumetric water content is associated with
increased lodging in wheat (Berry et al., 2004; Easson et al., 1995). To
generate optimized wheat deficit irrigation strategies that prevent
lodging, low ITHRU values should be passed to the model at lodging
susceptible growth stages

The modeling framework described in this work can also provide
better estimates of WP. Water productivity is defined as the ratio of
marketable yield (e.g., grain yield for maize and soybean) to evapo-
transpiration (Geerts and Raes, 2009). To determine the best deficit
irrigation strategy to calculate water productivity with limited water,
some studies rely on expert knowledge (Garcia-Vila et al., 2009), and
others on single seasonal soil water depletion thresholds using para-
meters similar to ITHRL (Geerts et al., 2009). However, our simulations
show that estimated water productivity calculated with a non-opti-
mized approach, which could result from using expert judgement or a
single ITHRL threshold for the whole season, was significantly lower for
seasonal available water scenarios between 50 and 200 mm than the
optimized approach (Table 4). These results suggest that optimized
irrigation schedules should be used to derive crop water productivity
curves rather than strategies derived using a single seasonal threshold.

3.4. Limitations of optimized irrigation schedules

Factors not considered in this study, like residue management, crop
rotations, or disease incidence, may affect irrigation schedules. Residue
management and crop rotations could alter soil water holding capacity
and therefore affect irrigation frequency. Irrigation applications may
also increase the incidence of fungal diseases under specific conditions
(Blad et al., 1978). These factors can also be modeled in DSSAT with the
appropriate calibration and validation data sets (e.g., Fang et al., 2010;
Singh et al., 2013).

It is also important to acknowledge that model simulations are
imperfect, and some level of uncertainty in every simulation is expected
(Spiegelhalter and Riesch, 2011). For the particular case of the maize
simulations, the uncertainty can be partially assessed by calculating the
relative mean squared error of prediction (RMSE) between the simu-
lated yield and the data observed by Bennett et al. (1989, 1986). The
RMSE of these simulations for the 1982 experiments is 16%. This is
comparable to RMSE values reported by Asseng et al. (2013) for wheat
(~10% fully calibrated and ~23% partially calibrated). Model un-
certainty should be considered when interpreting simulation results.
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For example, the difference in yield between optimized and non-
optimized simulations in the 250 mm available water scenario is 8%,
which while statistically significant should be interpreted with caution
given model uncertainty.

4. Conclusions

A new modeling framework for the evaluation of irrigation strate-
gies in water limited areas was described. This approach links water
availability to crop yield using a crop model, weather data, and soil
information. The new irrigation algorithm will be available to a broad
audience in the next release of the DSSAT cropping system model
(DSSAT v4.7).

In this study, we showed that calculating water productivity
estimates with non-optimized irrigation schedules may result in under-
estimation of water productivity. Optimized irrigation schedules could
be useful to derive location specific irrigation schedule guidance for
farmers and to calculate water productivity functions for regional
assesments.
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