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We propose a Bayesian-averaging portfolio choice strategy with excellent out-of-sample
performance. Every period a new model is born that assumes means and covariances are
constant over time. Each period we estimate model parameters, update model probabilities,
and compute robust portfolio choices by taking into account model uncertainty, parameter
uncertainty, and non-stationarity. The portfolio choices achieve higher out-of-sample Sharpe
ratios and certainty equivalents than rolling window schemes, the 1/N approach, and other
leading strategies do on a majority of 24 datasets. (JEL G11, C11, D81)
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We propose a robust Bayesian-averaging (BA) portfolio choice rule that
achieves higher out-of-sample certainty equivalents and Sharpe ratios than
many other popular rules do on a majority of daily, weekly, monthly, and
artificial data sets. Our portfolio choice rule assumes an ever growing number
of models that possibly describe asset returns. Each model is simple, and each
specifies that asset returns have constant means and covariances over time.
Every period in our sample, a new model is born. For example, when 20,000
periods of historical returns are observed, there are 20,000 possible models for
asset returns. Old models never die, but can become irrelevant over time if their
predictions are unsatisfactory. Every period, when new information becomes
available, we estimate parameters for each model and compute statistically
optimal probabilities that each model is correct. Because the future may be
different from the past, we adopt portfolio choice rules that are robust to model
misspecification.

We evaluate daily, weekly, and monthly out-of-sample performance on 24
well-known data sets from the Center for Research in Security Prices (CRSP)
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Robust Bayesian Portfolio Choices

and Ken French’s Web site. We show that the robust BA portfolio choice
rule statistically outperforms rolling window approaches, 1/N, Jorion’s Bayes-
Stein procedure, Kan and Zhou’s three-fund rule, and other leading rules. To
compare performance, we derive asymptotic standard errors for Sharpe ratios
and certainty equivalents that are applicable under serial correlation by applying
generalized method of moments (GMM). The standard errors improve on the
asymptotic standard errors usually reported in the literature, which assume
returns are independent and identically distributed over time. We also provide
results for simulated data sets and show the superior performance of the robust
BA strategy when there is a possibility of regime switches.

A key motivation for the robust BA strategy is that historical means
often predict future quantities better than other more complicated forecasts.1

However, in standard forecasting methods, such as rolling window approaches,
the amount of data used to predict future means is a-priori determined. In
our approach, excess returns are forecasted exclusively by past sample means
and variances without preselecting the window size. Investors do not know
which window size is best and use Bayesian statistical methods to determine
the probabilities over all windows. The probabilities change over time, as new
information arrives, and typically are positive for many different window sizes.
Our approach is less susceptible to look-ahead bias than non-Bayesian methods
are because we use only previously available information to form weak priors
over window sizes.2

Our robust BA rule builds on a large body of literature. Previous research
typically focuses on optimal portfolio choices in a formally specified economic
environment. There has been little progress made on portfolio choices that work
well out of sample. Although, so called optimal choices are by construction the
best choices in a given sample, they tend to perform poorly out of sample.

Since Markowitz’s seminal work on optimal portfolio choices, the dominant
paradigm applies and extends his approach. Markowitz assumes investors have
preferences over the mean and variance of asset returns. When there exists a
risk-free rate, the solution to Markowitz’s problem is to invest the fractions

1

θ
�−1μ (1)

in risky assets where θ is a measure of risk aversion, � is an n×n covariance
matrix of asset returns, and μ is an n×1 vector of mean excess returns. The
portfolio choice rule in Equation (1) is widely used and also is the optimal
choice rule under several other sets of assumptions. Merton (1973) shows in

1 Welch and Goyal (2008) demonstrate that historical means better predict the equity premium than other forecasts.

2 In the last decade, there has been a resurgence of interest in using distributed lag approaches to forecast means
and variances where often parameters in an a-priori specified flexible functional form are estimated to determine
the weights on past observations. For example, see Ghysels, Santa-Clara, and Valkanov (2005). Our approach
is similar, except we do not impose a functional form and instead use Bayesian statistical methods to determine
the weights.
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continuous time, with power utility, constant means, and constant covariances,
that this portfolio choice rule is optimal. It is also well known that the same
portfolio choice rule is optimal when agents have exponential utility in discrete
time and excess asset returns are normally distributed. Samuelson (1970) shows
that Equation (1) is an approximation for the optimal portfolio choice rule
for much more general utility functions and assumptions about the stochastic
processes governing asset returns. Campbell and Viceira (2002) apply a similar
approximation to a wide range of examples. See Meucci (2005) for extensions
and applications of Markowitz’s problem.3

Applications of Markowitz’s approach often estimate constant means and
covariances for asset returns from historical data. The estimates are typically
assumed to be exactly correct and then plugged into the portfolio choice rule
in Equation (1) to obtain both in-sample and out-of-sample portfolio choices.
In sample, if means and covariances are constant then this strategy is by design
optimal (for mean-variance preferences) and cannot be improved upon. Out of
sample, if means and covariances do not change from their in-sample values
then it again is optimal. However, in practice, means and covariances typically
change through time, and this strategy usually performs extremely poorly out
of sample.

Several studies have shown that simple naive portfolio strategies perform
better than Markowitz’s rule and other so called optimal choices, out of sample.
DeMiguel, Garlappi, and Uppal (2009) show on several monthly datasets that
the naive strategy, which invests an equal amount in each risky asset, called 1/N,
generally performs better out of sample than the leading sophisticated models
of optimal choice do. The 1/N rule does not involve optimization and instead
invests the fraction 1/N in each available risky asset, every period regardless of
future expectations. Tu and Zhou (2011) demonstrate that combining 1/N with
leading models leads to additional gains.4

The poor out-of-sample performance of Markowitz’s and related approaches
happens for several reasons. One reason is that estimates of means, variances,
and other parameters are often imprecise, but the imprecision is usually ignored
when computing optimal portfolio choices. A second reason is that although
economic models are only an approximation to reality, investors’ doubts about
their models are usually ignored when making portfolio choices. For example,
it is often assumed that asset returns have constant variances over time but
it is possible that this assumption is false and variances actually follow a
more complicated process such as a GARCH (Generalized Autoregressive
Conditional Heteroskedasticity) process. A third reason is that the world may
be always changing in new and unpredictable ways, and it is difficult to forecast
future asset returns using past information.

3 See Brandt (2010) for a more general survey of portfolio choice problems.

4 See Duchin and Levy (2009) for a succinct overview of the 1/N strategy.
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We propose methods that improve out-of-sample performance by taking
into account parameter uncertainty, model uncertainty, and non-stationarity.
We deviate from the standard approach by assuming there are large number of
possible models of the world, and adopt a robust BA approach where investors
constantly update the probabilities of each model. Investors are fully aware that
their models may be misspecified despite the richness of their models.

Many other applications of Bayesian methods have been proposed. See, for
example, Jorion (1986), Kandel and Stambaugh (1996), Xia (2001), Kan and
Zhou (2007), and Tu and Zhou (2010), and for important contributions where
there is one model but parameters are uncertain and updated over time. See
Avramov (2002), Cremers (2002), and Tu and Zhou (2004) for contributions
where there is more than one model.5 In our approach there are a large number
of possible models, whereas most previous applications of Bayesian averaging
have used a small number of models.

Following Hansen and Sargent (1995); Hansen, Sargent, and Tallarini
(1999); Anderson, Hansen, and Sargent (2003); Hansen and others (2006);and
Hansen and Sargent (2007b), we allow agents to worry about misspecification
by considering perturbations to the probability density of asset returns that
decrease utility. Maenhout (2004) and Uppal and Wang (2003) apply this
approach to portfolio choice problems. Dow and Werlang (1992); Garlappi,
Uppal, and Wang (2007); and Epstein and Schneider (2010) have considered
portfolio choice models with alternative formulations of model uncertainty.

1. Overview

This section informally provides an overview of nonrobust and robust BA
portfolio choices.

1.1 The models
We begin by describing the information and models available at an hypothetical
date t−1. At date t−1, there are t−1 possible models for the excess returns
of risky assets over the risk-free asset. The mth model (where 1≤m≤ t−1)
assumes excess returns have constant means and covariances between dates
m and t−1. For example, Model 1 has a constant mean and covariance
between dates 1 and t−1; and Model 2 has a constant mean and covariance
between dates 2 and t−1. The last model is model t−1 with a constant mean
and covariance that applies only at date t−1. The models use weak prior
information from earlier asset returns.

Investors are uncertain if any of the models are correct. All models could be
correct, some models could be correct, or no models could be correct. To use
standard statistical inference, we initially make the assumption that at least one

5 For a summary of Bayesian portfolio choice studies, see Avramov and Zhou (2010) and Pastor and Veronesi
(2009).
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of the available models is correct. However, when making optimal portfolio
choices, we consider the possibility that none of the existing models are correct.
We use the following notation for model probabilities:

Definition: When there are s possible models, Ps (m|F t−1) is the probability
that model m is correct, and no older model q<m is correct, conditioned on
information available at time t−1 and the assumption that at least one of the s
models is correct.

In our setup, the s subscript is important because the probability of model m
depends upon how many other possible models exist. When there are currently
t−1 possible models, s = t−1.

The t−1 models have an important logical structure: if a model is correct,
then all younger models also are correct. For example, if Model 2 is correct,
then Models 3,4,...t−1 also must be correct because if means and covariances
are constant at dates 2,3,4,...t−1, then they also must be constant at dates
3,4,5,...t−1 (so that Model 3 is right). It further follows that means and
covariances are constant at dates 4,5,6...t−1 (so that Model 4 is right) and
so on.

The following example illustrates the overlapping probabilities. Lets assume
t−1=4 and Model 1 is correct with probability 10%, Model 2 is correct with
probability 50%, Model 3 is correct with probability 80%, and Model 4 is
correct with probability 100%. Then the probability that Model 2 is correct
and Model 1 is not correct is 40%; the probability that Model 3 is correct and
Models 1 and 2 are not correct is 30%; and the probability that Model 4 is
correct and Models 1, 2, and 3 are not correct is 20%. In this case we set

P4 (1|F4)=0.10, P4 (2|F4)=0.40, P4 (3|F4)=0.30, and P4 (4|F4)=0.20.

To conserve words we often say P4 (3|F4) is the probability that Model 3 is
correct (when further clarification is not needed), but it is important to remember
that this really is the probability that Model 3 is correct and Models 1 and 2
are not correct; when it is assumed that at least one of the models {1,2,3,4} is
correct.

1.2 Updating probabilities and parameters
At date t, investors update probabilities and parameters in two stages. First, a
new model, model t, is born and the probabilities of all models are adjusted to
Pt (m|Ft−1) for its inclusion. The new model has weak prior information that
says the mean and variance of each asset’s returns are equal to the common past
mean and the common past variance of all assets. The adjusted probabilities
take into account that the new model has some positive probability, and thus the
probabilities of older models are reduced. See Sections 3.1 and 8 for discussions
of several ways to adjust probabilities.

Second, investors observe excess returns at date t, denotedRt, and update the
parameters and probabilities of all models using Bayes rules based on this new
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information. The probability of each model,m, is updated from Pt (m|Ft−1) to
Pt (m|Ft ). The available models are now: Model 1 with a constant mean and
covariance between dates 1 and t,Model 2 with a constant mean and covariance
between dates 2 and t, and so on. The last model is now model t with a constant
mean and covariance that applies only at date t .

1.3 Expectations and optimal portfolio choices
Investors form expectations of future returns using the probabilities Pt (m|Ft )
over models and estimates of means and covariances in each model. Optimal
portfolio choices, φt , at time t are calculated when investors have standard
mean-variance preferences and robust mean-variance preferences. Out-of-
sample portfolio returns are observed at time t +1. See Sections 4 and 5 for
the details.

1.4 Timeline
In summary, the timeline of events is as follows:

Date Events
t−1 � There are t−1 existing models that possibly describe

past asset returns.
Each model m has probability Pt−1 (m|Ft−1).

t � A new model, model t, is born and probabilities for all
models are adjusted for its inclusion. Each model m
now has probability Pt (m|Ft−1).

� Excess returns at time t, Rt , are observed.
Parameters for each model are updated.
Probabilities are updated so that each model m now has

probability Pt (m|Ft ).

� Expectations of excess returns at time t +1, Rt+1, are
formed.

� Optimal portfolio choices, φt , at time t are computed.

t +1 � Excess returns at time t +1, Rt+1, are observed and
excess portfolio returns φ′

tRt+1 are realized.

2. Models

We now formally describe the available models. At period t, there are t−1
existing models (that were also alive at time t−1) and one new model of an n
dimensional vector of excess returns.

2.1 Existing models
Let Mt−1 be the collection of all possible models at time t−1. Each possible
model m∈Mt−1 assumes the n dimensional vector of available excess returns
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follows a multivariate normal distribution with a constant meanμ and a constant
covariance matrix � :

Rt ∼N (μ,�).

The constant mean and covariance differ across models and are not known
perfectly by investors. Over time, agents learn about the mean and covariance
by observing actual returns. At time t−1, for model m∈Mt−1, beliefs about
mean returns, μ, and the covariance of returns, �, are:

�∼IW (�m,t−1,νm,t−1), (2)

μ|�∼N (μm,t−1,�/κm,t−1). (3)

The notation IW (�m,t−1,νm,t−1) denotes the inverse-Wishart distribution with
the inverse scale matrix �m,t−1 and degrees of freedom νm,t−1. The subscript
“m,t−1” indicates these are the beliefs in the particular modelm at time t−1.
The variables μm,t−1 and κm,t−1 give the mean and precision of beliefs about
μ. It follows that the joint prior beliefs ofμ and� are normal-inverse-Wishart:

μ,�∼NIW (μm,t−1,κm,t−1,�m,t−1,νm,t−1).

As discussed in later sections, beliefs evolve over time but maintain the same
functional form. Although it is standard to capture the evolution of beliefs by
tracking the parameters (μm,κm,�m,νm) over time, this is inconvenient for
economic interpretations. It is more convenient to define

�m,t−1 =

(
1

δm,t−1

)
�m,t−1, δm,t−1 =νm,t−1 −n−1,

and track the evolution of the parameters (μm,κm,�m,δm) because the mean
of an IW (�m,t−1 ,νm,t−1) random variable is �m,t−1 and the value of δm,t−1 is
easily comparable across datasets.6

2.2 New models
In our BA method, each period a new model is born and endowed with a
prespecified prior. This section describes the prior beliefs of the new model
born at time t, before time t returns, Rt, are observed. The new model is
labeled model t and assumes the n×1 vector of available excess returns follows
a multivariate normal distribution with a constant mean μ and a constant
covariance matrix � :Rt ∼N (μ,�).

6 For the inverse-Wishart distribution to have a finite mean, it is necessary for δm,t−1 to be positive or, equivalently,
it is necessary for νm,t−1 to be greater than n+1. Because the later requirement depends on the number of assets,
it is not easily comparable across datasets.
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Prior beliefs of the agents about the mean and covariance are normal-inverse-
Wishart:

μ,�∼NIW (μt,t−1,κt,t−1,�t,t−1,νt,t−1)

with �t,t−1 =δt,t−1�t,t−1 and νt,t−1 =δt,t−1 +n+1. The subscript t,t−1
indicates these are the beliefs in the particular model t at time t−1. μt,t−1

gives the best guess of mean returns;�t,t−1 gives the best guess of covariances;
δt,t−1 captures the confidence of beliefs about covariances; and κt,t−1 captures
the confidence of beliefs about means.

In our applications, we set the priors for model t as:

μt,t−1 = μ̄t−11n, κt,t−1 =1, �t,t−1 = λ̄t−1In, δt,t−1 =1,

where the scalar parameters μ̄t−1 and λ̄t−1 are time-varying and are the common
past sample means and variances across all assets. We set

μ̄t−1 =
1

n

n∑
i=1

μ̄i,t−1, λ̄t−1 =
1

n

n∑
i=1

λ̄i,t−1,

where

μ̄i,t−1 =
1

t−1

t−1∑
s=1

Ri,s, λ̄i,t−1 =
1

t−2

t−1∑
s=1

(Ri,s−μ̄i,t−1)2

and Ri,s is the excess return on asset i between periods s−1 and s. Thus the
prior beliefs about mean excess returns and variances are identical for each
asset. The prior beliefs about the covariance between any two assets is zero.
Because κt,t−1 =1 and δt,t−1 =1, the priors for means and variances are very
weak.7

3. Updating Models and Probabilities

In this section, we update model probabilities and parameters when a new
model is born and when new information arrives.

3.1 Updating model probabilities when a new model is born
We describe several methods for updating the probabilities of models after
model t is born but before time t information is observed. By updating
probabilities, we are choosing priors for next period. In the basic version of
the BA algorithm, described in Sections 2 through 5, investors a priori choose
one particular prior rule and use that rule at all dates. In Section 8, we formally

7 Because for Model 1 at time one there is no history of data, we set μ̄0 =0. To use historical data to estimate
variances, we need at least two periods of data, so we set both λ̄0 and λ̄1 to 0.0001 with daily data, 0.0005 with
weekly data, and 0.002 with monthly data. In later sections, we use a burn-in period, so the prespecified values
for μ̄0, λ̄0, and λ̄1 have a negligible effect on our results.
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embed prior selection inside optimization problems and allow investors to use
different priors at different dates.

We begin by discussing two simple priors, the 1/t and equal-weighted priors.
We then describe the minimal restrictions for appropriate priors and explore
the sharing and power priors that satisfy the minimal restrictions and build on
the simple priors.

3.1.1 The 1/t prior. One simple updating method, which we call 1/t, sets
the probability of model t at time t to be 1/t and proportionally discounts the
probability of all other models:

Pt (m|Ft−1)=

{(
1− 1

t

)
Pt−1 (m|Ft−1) if m<t

1
t

if m= t.

This puts the probability of the new model on equal footing with the average
probability of the older models.

3.1.2 Equal-weighted prior. Another simple updating method assigns the
probability 1/t to all models at time t :

Pt (m|Ft−1)=
1

t

for m≤ t . Unlike other priors, the equal-weighted prior ignores all observed
past information on excess returns.

3.1.3 Minimum restrictions on priors. The 1/t and equal-weighted priors
are highly restrictive and do not allow for many other possible prior selection
rules. To understand reasonable minimal restrictions on priors, it is useful to
recall if model q is correct then all younger models m, such that m>q, also
must be correct. This suggests that we can set the priors for new models by
transferring probabilities from older models to newer models so that the sum
of probabilities of all models born at date m and earlier does not exceed the
sum of their previous probabilities. More formally,

m∑
q=1

Pt (q|Ft−1)≤
m∑
q=1

Pt−1 (q|Ft−1) (4)

for allm<t . No restrictions are placed on the probability of the newest model,
model t, other than probabilities must sum to one. The oldest model, Model
1, can not gain probability but all other older models, m<t, may lose or gain
probability as long as Equation (4) holds.

In Sections 3.1.4 and 3.1.5, we parameterize two different classes of fixed
prior rules that satisfy the minimal restrictions.
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3.1.4 Sharing prior. The sharing prior satisfies the minimal restrictions and
takes a concrete stand on the amount of probability transferred to newer models.
Let α denote the fraction of its previous probability that each model shares
equally with itself and newer models. Each model also retains the fraction
(1−α) of its previous probability. More formally for all models m∈Mt , we
set:

Pt (m|Ft−1)=⎧⎨
⎩

(1−α)Pt−1 (m|Ft−1)+α
[∑m

q=1

(
1

t−q+1

)
Pt−1 (q|Ft−1)

]
if m<t

α
[∑t−1

q=1

(
1

t−q+1

)
Pt−1 (q|Ft−1)

]
if m= t

for 0<α≤1. When α=1, each older model transfers all of its probability
equally to itself and all newer models. In this case, the newest model, model t,
and the next newest model, model t−1, have the same probability; and newer
models have higher probabilities than older models. When α=0, the newest
model receives zero probability and all older models retain all of their previous
probability. Because this would cause the newest model to have zero probability
throughout its life, we assume α is strictly greater than zero.

Many of the examples in this study use the sharing prior with α=1. We call
this the perfect sharing prior because older models share probabilities equally
with newer models. The perfect sharing prior is similar to the equal-weighted
prior but previous period posterior probabilities are shared equally with only
newer models. If perfect sharing also shared equally with older models, then it
would be identical to the equal-weighted prior.

3.1.5 Power prior. The power prior satisfies the minimal restrictions and
generalizes the 1/t rule presented in Section 3.1.1. Let β, such that 0<β≤1,
be a parameter that determines the discounting of older models:

Pt (m|Ft−1)=

⎧⎨
⎩
[

βt−mPt−1(m|Ft−1)∑t−1
q=1β

t−qPt−1(q|Ft−1)

](
t−1
t

)
if m<t

1
t

if m= t.
(5)

When β =1, this rule is equivalent to the 1/t rule. As β decreases, the
probabilities of older models fall faster, in percentage terms, than the
probabilities of newer models:

Pt (m−1|Ft−1)

Pt−1 (m−1|Ft−1)
=β

[
Pt (m|Ft−1)

Pt−1 (m|Ft−1)

]
≤ Pt (m|Ft−1)

Pt−1 (m|Ft−1)
,

when m<t . The newest model always receives 1/t probability, regard-
less of the value of β. The summation in the denominator and the
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(t−1)/t coefficient in Equation (5) normalize probabilities so that they sum
to one.8

3.2 Updating parameters when new information arrives
At every period t, investors observe excess returns Rt but no other new
information useful for predicting future returns. Before observingRt, investors’
beliefs about μ and �, in model m, are normal-inverse-Wishart:

μ,�∼NIW (μm,t−1,κm,t−1,δm,t−1�m,t−1,δm,t−1 +n+1).

Investors update their beliefs about μ and � after seeing Rt so that

μ,�∼NIW (μm,t ,κm,t ,δm,t�m,t ,δm,t +n+1), (6)

where

μm,t =
κm,t−1μm,t−1 +Rt

κm,t
, (7a)

�m,t =
δm,t−1κm,t�m,t−1 +κm,t−1 (Rt−μm,t−1)(Rt−μm,t−1)′

δm,tκm,t
, (7b)

κm,t =κm,t−1 +1, and δm,t =δm,t−1 +1. In Equation (7a), the mean beliefs in
model m at time t are a weighted average of the prior mean (the mean at time
t−1) and the new observation Rt . More weight is placed on the prior mean as
κm,t−1 increases. In Equation (7b), the mean beliefs about� are approximately
a weighed average of prior beliefs and the squared difference of returns from
prior means. Larger values of δm,t−1 increase the weight on prior beliefs about
�.9

Because beliefs at time t have the same functional form as beliefs at time
t−1, a normal-inverse-Wishart prior is a conjugate prior when means and
covariances are constant over time. Because in each model initial beliefs about
the mean and variances of returns are normal-inverse-Wishart, the beliefs at
every future date also will be normal-inverse-Wishart.

3.3 Updating model probabilities when new information arrives
Before observing excess returns, Rt, investors believe modelm is correct with
probability Pt (m|Ft−1). After seeing Rt, investors update the probability that
model m is correct, Pt (m|Ft ), using Bayes rule:10

Pt (m|Ft )=
L(Rt |m,Ft−1)Pt (m|Ft−1)∑
m∈Mt L(Rt |m,Ft−1)Pt (m|Ft−1)

.

8 Its straightforward to verify that this rule satisfies the minimal restrictions stated in Section 3.1.3.

9 The updating formulas in this section are well known. For example, see Section 10.2 of Bishop (2006).

10 As discussed earlier,Pt
(
m|Ft−1

)
is the probability that modelm is correct and no other model q,q<m is correct.

Because under this interpretation, the probabilities of the models are disjoint, Bayes rule is the statistically optimal
way to update probabilities when new information is observed.
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This can be easily computed because the likelihood of observing Rt, given
information at time t−1, in model m is:

L(Rt |m,Ft−1)=
κ
n/2
m,t−1|�m,t−1|νm,t−1/2�n(νm,t/2)

πn/2κ
n/2
m,t |�m,t |νm,t /2�n(νm,t−1/2)

, (8)

where �m,t =δm,t�m,t , νm,t =δm,t +n+1, and �n(x) denotes the multivariate
gamma function.11

4. Nonrobust Portfolio Choices

Assume there exists a risk-free rate between times t and t +1, denoted Rf t+1,

whose value is known at time t . As in earlier sections, let Rt+1 be the n-
dimensional vector of excess returns on the risky assets that are realized at
time t +1 and unknown at time t . The excess returns are formed by subtracting
the nominal risk-free rate from the nominal return on the risky assets. During
each period, t, investors compute optimal portfolio weights, φt , on all available
assets and earn excess returns φ′

tRt+1 the following period.

4.1 Mean-variance portfolio choices
As discussed in Markowitz (1952) and many subsequent papers, an investor
with mean-variance preferences maximizes

E
(
φ′
tRt+1 +Rf t+1|Ft

)− θ

2
V
(
φ′
tRt+1 +Rf t+1|Ft

)
(9)

by choice of portfolio weights φt , where E denotes expectation, V denotes
variance, and θ is a measure of risk aversion. We can write Objective (9) as

φ′
t μ̂t +Rf t+1 − θ

2
φ′
t �̂tφt ,

where μ̂t and �̂t are the investor’s beliefs about conditional means and
variances. The optimal portfolio weights are

φt =
1

θ
�̂−1
t μ̂t .

4.2 Bayesian-averaging portfolio choices
We compute mean-variance portfolio choices when expectations are formed
using Bayesian averaging. At time t, investors who use the BA algorithm
believe the distribution of excess returns is Rt+1 ∼N (μ,�) where there are

11 The likelihood formula Equation (8) is well known. See Murphy (2012).
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t possible models of μ and �. If model m∈Mt is correct, then investors’ best
approximation to μ and � is:

μ,�∼NIW (μm,t ,κm,t ,δm,t�m,t ,δm,t +n+1).

It follows that investors believe the conditional expectation of excess returns
is:

μ̂t =E (Rt+1|Ft )=
∑
m∈Mt

μm,t Pt (m|Ft ), (10)

and the conditional variance of excess returns is:

�̂t =V (Rt+1|Ft )=
∑
m∈Mt

(
�̄m,t +μm,tμ

′
m,t

)
Pt (m|Ft )−μ̂t μ̂′

t , (11)

where

�̄m,t =V (Rt+1|m,Ft )=

(
1+κm,t
κm,t

)
�m,t (12)

is the variance of Rt+1 conditioned on model m. Note that �̄m,t includes an
adjustment for parameter uncertainty in mean returns.

We assume BA investors have mean-variance preferences. Their optimal
portfolio weights are

φt =
1

θ
�̂−1
t μ̂t , (13)

where μ̂t and �̂t are the investor’s beliefs about conditional means and
variances given in Equations (10) and (11). We call the trading rule in Equation
(13), the (nonrobust) BA portfolio strategy.

5. Robust Portfolio Choices

Robust investors believe the world may be nonstationary, are unsure of the
future, worry that their best available approximation specification of asset
returns is wrong, and consider decision-making procedures that take into
account model misspecification.

We begin by writing standard mean-variance preferences as∫ [
φ′
t μ̂t +φ

′
t zt+1 +Rf t+1 − θ

2

(
φ′
t zt+1

)2
]
f (zt+1|Ft )dzt+1, (14)

where expected values are taken with respect to the conditional density of
zt+1 and where zt+1 is defined to be the deviation of Rt+1 from its conditional
mean: zt+1 =Rt+1 −μ̂t . Objective (14) is equivalent to Objective (9). In standard
mean-variance problems, investors assume f (zt+1|Ft ) is the correct probability
density function for zt+1 even though f could be misspecified in unimaginable
ways.
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5.1 Robust mean-variance optimization
We formulate a robust version of a mean-variance optimization problem and
allow agents to have doubts about future expectations. We formally incorporate
concerns, into the investor’s problem, that the best approximating density,
f (zt+1|Ft ), is misspecified. The investor wants to choose portfolio allocations
that will do well even when the approximation is wrong. However, because
the approximation is reasonable, the investor focuses on specifications that are
close to the approximating specification, and constructs portfolio choices to
maximize utility on the worst specification that is close to the approximating
specification.

Following Hansen, Sargent, and Tallarini (1999) and Anderson, Hansen, and
Sargent (2003), we incorporate concerns for model misspecifications by letting
investors solve the following robust problem at time t :

max
φt

min
�t

∫
�t (zt+1)

[
φ′
t (μ̂t +zt+1)+Rf t+1 − θ

2

(
φ′
t zt+1

)2
]
f (zt+1|Ft )dzt+1

+
1

τ

∫
�t (zt+1)log�t (zt+1)f (zt+1|Ft )dzt+1 (15)

subject to the constraint∫
�t (zt+1)f (zt+1|Ft )dzt+1 =1, (16)

where zt+1 =Rt+1 −μ̂t . The robust problem introduces the function �,

which alters the investor’s perceived density of asset returns. We interpret
f (zt+1|Ft ) as the agent’s best approximation for the distribution of zt+1

and f (zt+1|Ft )�t .(zt+1) as an alternative distribution for zt+1. Constraint (16)
requires that f (zt+1|Ft )�t .(zt+1) be a probability density function.

In the robust problem, investors penalize perturbations to the density of
returns by the relative entropy of alternative distributions with respect to the
best approximating distribution:

1

τ
E [�t (zt+1)log�t (zt+1)|Ft ].

The scalar parameter τ is a measure of model uncertainty aversion, and larger
values correspond to higher levels of aversion. In the limit, as τ approaches
zero from the right, the investor’s problem becomes identical to the (nonrobust)
mean-variance problem described in Section 4. The investor uses relative
entropy to measure the closeness of distributions and is worried about receiving
less utility if alternative specifications, whose distributions have a small relative
entropy with respect to his best approximation, happen to be true. As discussed
by Hansen and Sargent (2007b) and Hansen and others (2006), this formulation
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is equivalent to a robust control problem with constraints on the degree of model
misspecification.12

The inner minimization, in the robust problem, considers a “constrained”
worst-case possibility for asset returns. The solution to the inner minimization is

�∗
t (zt+1)=

exp
[
−τφ′

t zt+1 + θτ
2

(
φ′
t zt+1

)2
]

E
(

exp
[
−τφ′

t zt+1 + θτ
2 (φ′

t zt+1)2
]
|Ft

) . (17)

Thus the agent focuses on the distribution f (zt+1|Ft )�∗
t (zt+1) when solving the

outer maximization problem for portfolio choices. Substituting this minimizing
choice of � into the robust problem yields:

max
φt

(
φ′
t μ̂t +Rf t+1−

1

τ
log
∫

exp

[
−τφ′

t zt+1 +
θτ

2

(
φ′
t zt+1

)2
]
f (zt+1|Ft )dzt+1

)
. (18)

In the control theory literature, Problem (18) is known as a risk-sensitive
optimization problem. Under general conditions, as discussed by Hansen
and Sargent (2007b), risk-sensitive optimization problems are observationally
equivalent to robust optimization problems. In the risk-sensitive problem,
expectations are taken with respect to the best approximating distribution,
f (zt+1|Ft ), not the alternative distribution f (zt+1|Ft )�∗

t (zt+1).

5.2 Robust Bayesian-averaging portfolio choices
BA investors believe the distribution of the means and variances of excess
returns is a mixture of normal-inverse-Wisharts and fully take into account
estimation error or parameter uncertainty. We assume robust BA investors
ignore parameter uncertainty in variances (within each model), when making
portfolio choices, for two reasons. First, because robust agents worry about
all aspects of the return distribution it is not necessary for them to fully take
into account parameter uncertainty. Second, if robust agents believe that the
distribution of the means and variances of excess returns is a mixture of normal-
inverse-Wisharts, then there are no reasonable solutions to the robust problem
since the integral in Equation (18) is infinite whenever agents invest in risky
assets. In this case, for any positive level of aversion to model uncertainty,
robust agents only invest in the risk-free asset.13 Because robust agents ignore
parameter uncertainty in variances, when making portfolio choices, their

12 A somewhat similar approach to mean-variance analysis has been undertaken by Garlappi, Uppal, and Wang
(2007). Their approach penalizes deviations from mean returns in a different way.

13 If we assumed different distributions for excess returns, then it is possible that the robust problem, in the presence
of parameter uncertainty, will have interesting solutions.
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approximating specification is that the distribution of excess returns is a mixture
of normals.

When making portfolio choices, robust BA investors are still uncertain about
the correct model, still uncertain about mean returns in each model, and (as all
robust investors) are uncertain about the entire specification. At time t, model
m is correct with probability Pt (m|Ft ) and conditioned on model m (but not
the realization of μ), the distribution of excess returns is

Rt+1 ∼N (
μm,t ,�̄m,t

)
. (19)

Parameter uncertainty in mean returns is taken into account and, as in Formula
(12), �̄m,t includes an adjustment to �m,t because μ is unknown. Views about
means,E (Rt+1|Ft ), and variances,V (Rt+1|Ft ), of excess returns coincide with
those who fully take into account of parameter uncertainty. However, views
about other aspects of the return distribution are substantially different, and
the exclusion of estimation error in variances leads to much different robust
portfolio choices.

We assume that robust BA investors ignore parameter uncertainty in
variances only when forming their approximating model and making portfolio
choices. They do consider parameter uncertainty in variances when updating
model probabilities and model parameters. Thus, robust and nonrobust
Bayesian investors use the same formulas to update probabilities and
parameters.

When excess returns are a mixture of normals, we can write the robust
objective more explicitly. Conditioned on modelm, the vector zt+1 is distributed
normal with mean μm,t−μ̂t and variance �̄m,t because14

E (zt+1|m,Ft )=E (Rt+1|m,Ft )−E (μ̂t |m,Ft )=μm,t−μ̂t
and

V (zt+1|m,Ft )=V (Rt+1|m,Ft )= �̄m,t .

Using standard results the integral in Equation (18) is

∫
exp

[
−τφ′

t zt+1 +
θτ

2

(
φ′
t zt+1

)2
]
f (zt+1|Ft )dzt+1

=
∑
m∈Mt

Um,tPt (m|Ft ), (20)

where

Um,t =

⎧⎨
⎩

1√
qm,t

exp

[
τ2φ′

t �̄m,t φt−2τξm,t+θτξ2
m,t

2qm.t

]
when qm,t >0

+∞ when qm,t ≤0
(21)

14 The expected value of μ̂t given model m is μ̂t since μ̂t is a known constant at time t . We are not taking the
expectation with respect to multiple samples. Asymptotically, if model m is correct, then we would expect μ̂t
andμm,t to be identical. However, we only have one finite sample. If modelm is correct, in a given finite sample,
μ̂t will not usually equal μm,t .
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with
qm,t =1−θτφ′

t �̄m,tφt , ξm,t =φ
′
t (μm,t−μ̂t ).

When the integral is +∞, the value of the robust problem (Formula [18]) is −∞.
It is not possible to derive an analytical formula for optimal portfolio choices.
However, because the objective is concave in φt and its straightforward to
derive an analytical first derivative of the objective, this optimization problem
is easy to solve numerically.

In summary, robust BA portfolio choices solve Formula (18) where the
integral is given by Equation (20).

6. Alternative Portfolio Rules

We review several well-known portfolio choice algorithms for allocating
investments among a risk-free asset and n risky assets. All of the algorithms
select an n-dimensional vector of portfolio weights, which gives the fraction of
wealth invested in each risky asset. We propose robust and constrained versions
of many of the algorithms. Section 7 compares the out-of-sample performance
of each algorithm to robust and nonrobust BA.

6.1 Rolling expectations
The rolling expectations method, sometimes referred to as the rolling (windows)
approach, approximates future means and variances of returns with the sample
means and covariances from a fixed window of recent data. Investors who use
rolling expectations believe E (Rt+1|Ft )= μ̂t and V (Rt+1|Ft )= �̂t , where

μ̂t =
1

w

t∑
s=t−w+1

Rs, (22)

�̂t =
1

c

t∑
s=t−w+1

(Rs−μ̂t )(Rs−μ̂t )′ , (23)

and w is the window size. Priors are not used, and data are equally weighted
within the window. Different variations of this algorithm use different values of
the scaling coefficient, c. Some algorithms use a maximum likelihood estimate
of the covariance matrix which sets c=w. Other algorithms use c=w−n−2
so that �̂−1

t is an unbiased estimator of the population inverse covariance
matrix, under standard assumptions. Another possibility is to set c=w−1 so
that �̂t is an unbiased estimator of the population covariance matrix, under
standard assumptions.15 In our applications of the rolling expectations method,
we set c=w−1.Anonrobust investor with rolling expectations uses the formula
1
θ
�̂−1
t μ̂t to compute optimal mean-variance portfolios, where θ is the investor’s

risk aversion.

15 The standard assumptions used to justify estimates of covariances do not necessarily hold in our setup.
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6.2 Historical expectations
The historical-expectations approach approximates future means and variances
of returns using all available historical returns. Investors who use historical
expectations believe E (Rt+1|Ft )= μ̂t and V (Rt+1|Ft )= �̂t , where

μ̂t =
1

t

t∑
s=1

Rs, (24)

�̂t =
1

t−1

t∑
s=1

(Rs−μ̂t )(Rs−μ̂t )′ . (25)

These investors treat all past data as equally important and do not use
priors. Similar to investors with rolling expectations, a nonrobust investor
with historical expectations uses the formula 1

θ
�̂−1
t μ̂t to compute optimal

mean-variance portfolios.16

If means and covariances are constant over time, then the historical-
expectations approach should outperform the rolling expectations approach.
However, if means and covariances change over time, then the rolling
expectations approach can perform better if its window size is chosen wisely.

6.3 1/N
The 1/N strategy invests an equal amount in each available risky asset and
nothing in the risk-free asset. This strategy has been discussed for a long time.
Duchin and Levy (2009) trace its origins to the Babylonian Talmud which
said: “A man should always place his money, one-third in land, a third into
merchandise, and keep a third in hand.” The modern formulation of 1/N has
been analyzed by DeMiguel, Garlappi, and Uppal (2009) and Tu and Zhou
(2011). The portfolio choice rule for 1/N is prespecified to be

φt =

(
1

n

)
1,

where 1 is a vector of ones. Agents invest an equal amount in each risky asset
regardless of their beliefs about means and variances. By design, this approach
never sells assets short.

6.4 Market
The market strategy always invests 100% of wealth in the value-weighted
market. This approach does not involve any optimization and by design does not
engage in short selling. This is the optimal investment strategy if all investors
have identical mean-variance preferences and the equilibrium in the capital
asset pricing model (CAPM) describes reality.

16 In this study, all applications of historical expectations compute �̂t using the t−1 divisor in Formula (25).
Similar to the discussion in the rolling windows section, possible variations on this algorithm could divide by t
or t−n−2.
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6.5 The minimum variance strategy
The minimum variance strategy computes the portfolio, consisting of only risky
assets, which minimizes the variance of returns. The investor’s problem is to
minimize

V
(
φ′
tRt+1 +Rf t+1|Ft

)
by choice of portfolio weights φt subject to the constraint 1′φt =1. The optimal
solution is the minimum variance portfolio

φt =
�̂−1
t 1

1′�̂−1
t 1

,

where �̂t is an estimate of conditional variance. The examples in later sections
use the rolling window estimate of �̂t , in Equation (23), with c=w−1. We use
a window size of 250 days for daily data, 100 weeks for weekly data, and 60
months for monthly data. This method can sell assets short.

6.6 Jorion’s Bayes-Stein procedure
Jorion (1986) assumes investors use shrinkage estimators when estimating
means and variances. The estimate of the mean is a weighted average of the
rolling mean estimator and the mean of the past return on the minimum variance
portfolio:

μ̂∗
t =(1−vt )μ̂t +vt μ̂gt ,

where

μ̂
g
t =

(
μ̂′
t �̂

−1
t 1

1′�̂−1
t 1

)
1, vt =

n+2

(n+2)+w(μ̂t−μ̂gt )′�̂−1
t (μ̂t−μ̂gt )

.

Here μ̂t is a rolling estimator of past mean returns; �̂−1
t is the rolling unbiased

estimator of the inverse covariance matrix with window size w and with c=
w−n−2; μ̂gt is a vector whose each element is the investor’s beliefs of the
mean return on the minimum variance portfolio; and vt captures the optimal
weights to minimize utility loss (under assumptions described by Jorion[1986]).
In later sections, we use a window size of 250 days for daily data, 100 weeks
for weekly data, and 60 months for monthly data.

Jorion estimates the variance by combining �̂t with the variance of the
minimum variance portfolio:

�̂∗
t =

(
1+

1

w+Jt

)
�̂t +

Jt

w(w+1+Jt )

11′

1′�̃−1
t 1

,

where

Jt =
n+2[

(μ̂t−μ̂gt 1n)′�̂−1
t (μ̂t−μ̂gt 1n)

] .
The ratio 1/

(
1′�̃−1

t 1
)

is the variance of the minimum-variance portfolio return.

The Jorion Bayes-Stein optimal portfolio choice rule is 1
θ
�̂∗−1
t μ̂∗

t .
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6.7 Kan and Zhou’s three-fund rule
Kan and Zhou (2007) modify shrinkage estimators to minimize the effect on
utility loss of errors in estimating means and variances. As in Jorion’s rule,
estimates of mean returns are a linear combination of the rolling estimate and
the mean of the minimum variance portfolio:

μ̂∗
t =(1−vt )μ̂t +vt μ̂gt ,

where

vt =
n

wξt +n
, ψt =(μ̂t−μ̂gt )′�̂−1

t (μ̂t−μ̂gt ),

ξt =
1

w
[(w−n−1)ψt−(n−1)]+

1

wBt

[
2(ψt )

n−1
2 (1+ψt )

− (w−2)
2

]
,

and where

Bt =
∫ xt

0
ya−1(1−y)b−1dy

is the incomplete beta function with parameters xt =ψt/(1+ψt ), a=(n−1)/2,
and b=(w+1)/2. Beliefs about the covariance of returns are given by the
maximum likelihood estimator with c=w. The weight vt differs from Jorion’s
weight. Kan and Zhou use the same formula for μ̂gt as Jorion. In later sections,
we use a window size of 250 days for daily data, 100 weeks for weekly data,
and 60 months for monthly data.

The optimal portfolio choice rule is (h/θ )�̂−1
t μ̂

∗
t , where the constant

h=
(w−n−1)(w−n−4)

w(w−2)

minimizes utility loss, under Kan and Zhou’s assumptions.

6.8 Robust portfolio choices for alternative algorithms
We consider robust versions of the rolling, historical, Jorion, and Kan-Zhou
approaches. Because we need to know the best available approximation to the
distribution of future returns to compute robust portfolio choices, we assume at
time t an investor’s best approximation is normal:Rt+1 ∼N (

μ∗
t ,�

∗
t

)
,whereμ∗

t

and�∗
t vary across the four methods.17 Because the robust investor worries that

his approximation is wrong, he solves the robust mean-variance optimization
problem in Section 5.1, which simplifies to:

max
φt

(
φ′
tμ

∗
t +Rf t+1 +

logqt
2τ

− τφ′
t�

∗
t φt

2qt

)

17 For rolling and historical expectations, μ∗
t = μ̂t and �∗

t = �̂t . For Jorion’s procedure, μ∗
t = μ̂∗

t and �∗
t = �̂∗

t . For
Kan-Zhou’s rule, μ∗

t = μ̂∗
t and �∗

t =(1/h)�̂t .
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when the best approximation of returns is normal. Here

qt =1−θτφ′
t�

∗
t φt ,

and when qt ≤0, the objective is −∞.18 As in Section 5.2, it is straightforward
to derive an analytical first derivative, which makes it possible to compute
numerical solutions quickly and accurately.

6.9 Constrained portfolio choices
Optimal portfolio choices sometimes require investors to take large negative
positions in assets which may not be advisable or allowed under current
regulations. It may be more realistic to consider problems with restrictions
on short selling. In this study we provide examples with strong restrictions that
prohibit any short selling.

We consider the modified mean-variance problem: maximize the objective
in Formula (9) by choice of portfolio weights φt subject to the constraints

φt ≥0, 1′φt ≤1, (26)

where 1 is a n-dimensional vector of ones. This approach forbids short-selling
in any asset, including the risk-free rate. We also consider robust portfolio
choice problems when short selling is prohibited by adding the constraints in
Equation (26) to the investor’s problems described in Sections 5.2 and 6.8.

7. Out-of-Sample Performance

We compare the out-of-sample performance of the BA approach with other
strategies on 24 daily, weekly, and monthly datasets from the Center for
Research in Security Prices (CRSP) and Kenneth French’s data library.19 We
also examine performance on simulated i.i.d. data and simulated data with
regime changes.20 Following DeMiguel, Garlappi, and Uppal (2009), we add
the value-weighted market to each portfolio in the actual data sets, but not

18 The simplification follows because investors believe the conditional distribution of zt+1 is normal with mean
zero and variance �∗

t . Thus,

∫
exp

[
−τφ′

t zt+1 +
θτ

2

(
φ′
t zt+1

)2]
f (zt+1|Ft )dzt+1 =

1√
qt

exp

(
τ2φ′

t �
∗
t φt

2qt

)

when qt >0.

19 The data were downloaded from Ken French’s Web site and Wharton Data Services (WRDS) in early 2012. See
CRSP’s documentation http://www.crsp.com/documentation/index.html for more details on the CRSP portfolios.
See Ken French’s Web site http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ for detailed descriptions of
his data. In early 2012, French’s daily data began in July 1963 (and later for some datasets). We integrate both
CRSP and French’s daily data to obtain weekly data. For CRSP, we also integrate daily data to obtain monthly
data.

20 Summary statistics for daily data are provided in Table 1. Summary statistics for weekly, monthly, and simulated
data are available upon request. Appendix A describes the artificial data.
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the simulated data sets. To facilitate the replication of our results, when using
CRSP data we use CRSP’s value-weighted market return on NYSE, Amex,
and NASDAQ stocks and we approximate the daily risk-free rate from CRSP’s
monthly data on the return of 30-day Treasury bill. When using Ken French’s
data, we use the value-weighted market return and the daily risk-free rate
reported by Ken French.

We measure out-of-sample performance using Sharpe ratios and certainty
equivalents. For all results in this study, risk aversion is one (θ =1). For
nonrobust approaches, model uncertainty aversion is zero (τ =0). In this section,
for all robust approaches, model uncertainty aversion is four (τ =4) and for BA
strategies the prior rule is perfect sharing (the fixed sharing prior rule with
α=1).

7.1 Sharpe ratios
The Sharpe ratio on the investor’s portfolio is the mean excess return on the
portfolio divided by its standard deviation:

Ē
(
Rpt+1

)
σ̄ (Rpt+1)

, (27)

where Rpt+1 =φ′
tRt+1 is the excess return on the investor’s portfolio, φt

is the portfolio weight vector, Ē denotes sample mean, and σ̄ denotes
sample standard deviation. For all reported portfolio choice strategies, φt only
uses information available at time t . For unconstrained nonrobust portfolio
optimization problems, when there are no restrictions on choices, the out-of-
sample Sharpe ratios do not depend on risk aversion. Otherwise, if short-selling
constraints are present then out-of-sample Sharpe ratios can depend on risk
aversion. For robust problems, Sharpe ratios can depend on risk-aversion and
model uncertainty aversion, both with and without short-selling constraints.

7.1.1 Unconstrained portfolios. Table 2 presents out-of-sample Sharpe
ratios for robust and nonrobust strategies when there are no short-selling
constraints. Over 24 daily datasets, the robust BA algorithm earns the highest
out-of-sample Sharpe ratio on 12 datasets and the BA algorithm earns the
highest out-of-sample Sharpe ratio on nine datasets. Other approaches earn the
highest Sharpe ratio on the following three datasets:

1. the value-weighted portfolios sorted on short-term reversal,

2. the value-weighted portfolios sorted on size and short-term reversal, and

3. the equally-weighted portfolios sorted on size and short-term reversal,

which involve the short-term reversal portfolios. Reversal portfolios are
by design a challenge for the BA method because reversal portfolios are
constructed so that well- (poorly) performing portfolios in the past are likely
to perform poorly (well) in the future. Implicitly, the BA algorithm assumes
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that assets with high returns in the past will have high returns in the future and
reversals are not foreseen.

For each strategy, Table 2 indicates if the difference in Sharpe ratios from
the robust BA strategy is significant at the 95% level. To compute significance,
we calculate t-statistics using GMM with the moment conditions described in
Appendix B.1, where the robust BA method is the benchmark and 22 lags are
used to compute the Newey-West spectral density. Robust BA is significantly
better than 1/N, the market strategy, and the minimum-variance procedure on
all 24 datasets. The overall performance of robust and nonrobust BA can not be
distinguished: on 13 datasets, they are statistically identical, on nine datasets,
robust BA significantly outperforms BA, and on two datasets BA significantly
outperforms robust BA. Robust BA significantly outperforms each of the other
alternative algorithms on at least 20 datasets.

Table 3 presents percentiles of Sharpe ratios across datasets, for each portfolio
strategy. For daily data, the minimum Sharpe ratio obtained by the robust BA
approach across all datasets is 0.131. This is higher than the minimum of any
other algorithm.At the 25% percentile, the robust BAachieves a Sharpe ratio of
0.197 which is also the highest across all algorithms. BAhas the highest median
and highest 75% percentile across all algorithms, slightly beating robust BA
by 0.003 and 0.001, respectively. Robust historical expectations achieves the
highest maximum Sharpe ratio. In summary, the robust and nonrobust BA
approaches win four of the five daily percentiles. For weekly data, robust
BA wins four of the five percentiles, losing only the median to the robust
Jorion algorithm by 0.008. For monthly data, robust BA wins three of the
five percentiles, losing the minimum to the market strategy by 0.004 and the
maximum to the robust strategy with a rolling window of 60 months. For
simulated i.i.d. data at every percentile, the 1/N strategy wins. The minimum
variance strategy is second on four percentiles. For simulated data with regime
changes, either robust or nonrobust BA wins all five percentiles.

Why do both robust and nonrobust BA perform well (both absolutely and
relative to other algorithms) when there are regime changes and poorly on
i.i.d. data? The main reason that robust BA and BA perform better in absolute
terms is that the conditional volatility of the underlying factor is lower in
the regime-change specification, which helps make forecasts of future means
more accurate.21 The main reason that robust and nonrobust BA perform better
relative to other procedures is that they can better predict time-varying expected
returns (caused by the changing mean of the factor) than other algorithms.

7.1.2 Constrained portfolios. Table 4 shows that the robust BA algorithm
achieves much higher out-of-sample Sharpe ratios than other strategies do
on 19 of 24 daily datasets, when short selling is prohibited. Four of the five

21 As described in Appendix A, we set the unconditional variance of the factor to be identical in the i.i.d. and
regime-change cases.
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datasets for which robust BA approach underperforms involve either the short-
term or long-term reversal portfolios. Unlike the unconstrained case, there is a
statistical difference between robust and nonrobust BA. Robust BA statistically
outperforms BA on 20 datasets and is statistically indistinguishable from BA
on the other four datasets. Robust BA is significantly better than the robust
Jorion and Kan-Zhou’s approaches on 14 datasets, the robust strategy with a
rolling window of 100 on 16 datasets, and all other algorithms on at least 18
datasets.

7.2 Certainty equivalents
The certainty equivalent is the constant risk-free rate that gives agents the same
utility out-of-sample as their optimal choices and is defined as

Ē
(
Rpt+1

)
+Ē

(
Rf t+1

)− θ

2
V̄
(
Rpt+1

)
, (28)

where V̄ is the sample variance. We assume that the goal of agents is to
maximize the mean-variance criteria out of sample, whether or not they have
robust preferences. Thus, investors would like to maximize Formula (28)
regardless of their model uncertainty aversion.22

7.2.1 Unconstrained portfolios. Table 5 shows that robust BA earns
decisively higher out-of-sample certainty equivalents on 20 of the 24 daily
datasets, when short selling is allowed. The four datasets for which robust BA
underperforms involve short-term reversal portfolios. The robust BA approach
is statistically significantly better than the 1/N strategy, the market strategy, the
minimum-variance strategy, the BAapproach, and the nonrobust technique with
a rolling window of 250 on all 24 datasets. Robust BAsignificantly outperforms
each of the other alternative algorithms on at least 21 datasets.23

Table 6 presents the percentiles of certainty equivalents across datasets, for
each algorithm. For daily and weekly data, robust BA achieves the highest
certainty equivalent on four of the five percentiles by a large margin, and the
nonrobust historical-expectations method achieves the best maximum certainty
equivalent. For monthly data, the robust BA achieves the highest certainty
equivalent on three of the five percentiles. The robust approaches with rolling
windows of 90 and 60 months achieve (respectively) the highest certainty
equivalents on the 75% and 100% percentiles. For simulated i.i.d. data, 1/N
wins four percentiles, and the nonrobust historical-expectations approach wins
the 100% percentile. For simulated data with regime changes, robust BA

22 Appendix C discusses the reasons for using Formula (28) to compute certainty equivalents when investors have
robust preferences.

23 To compute significance, we calculate t-statistics using GMM with the moment conditions described in
Appendix B.2, where the robust BA method is the benchmark and 22 lags are used to compute the Newey-West
spectral density.
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outperforms the other algorithms on all five percentiles, usually by a large
margin.

7.2.2 Constrained portfolios. Table 7 presents out-of-sample certainty
equivalents for robust and nonrobust strategies with short-selling constraints.
Over the 24 daily datasets considered, robust BA and BA perform nearly
identically and are statistically indistinguishable on 22 datasets. Robust BA
is significantly better than each of the alternative algorithms is on at least 18
datasets.

8. Uncertainty and Prior Selection

Often in Bayesian settings, results depend crucially on the choice of priors
and other arbitrarily fixed parameters and mechanisms. If future information is
inadvertently introduced into priors, parameters, or mechanisms, then out-of-
sample results may be contaminated. To avoid using future information, we tie
prior means and covariances to past sample data. We set the confidence in our
prior means and covariances, κ and δ, to be small so that they carry very little
weight. Small changes in the specification of prior means and covariances will
have little effect on our results. Two of our other arbitrary choices potentially
could have a large effect on our results: the choice of a prior rule for updating
the probabilities of all models when a new model is born and the choice of the
model uncertainty aversion level.

In this section, we show that robust BA, when paired with several different
prior rules and different values of model uncertainty aversion, also achieves
excellent out-of-sample certainty equivalents.24 We begin by discussing
methods for selecting uncertainty aversion and prior rules each period using
only currently available information. For comparison purposes, we also discuss
alternative fixed values of uncertainty aversion and alternative fixed prior rules.

8.1 Robust Bayesian averaging with optimal uncertainty and priors
In earlier sections, we proposed a robust BA portfolio choice strategy with a
fixed model uncertainty aversion parameter, and a fixed rule for determining the
prior probabilities of models. In reality, the optimal setting of model uncertainty
aversion may vary over time and there are many possible settings of prior
probabilities. At each date, we now let investors choose the model uncertainty
aversion parameter and the prior rule with the best past performance using
currently available information.

We index portfolio choices and portfolio returns by model uncertainty
aversion and the prior rule. The prior rule is a function that maps model

24 The choice of the risk-aversion parameter also could potentially influence our results. In results available upon
request, we demonstrate that we achieve similar results for several different values of risk aversion.
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probabilities before model t is born, {Pt−1 (m|Ft−1)}t−1
m=1, to the probabilities

after model t is born, {Pt (m|Ft−1)}tm=1. Let Ω be the set of possible values of
model uncertainty aversion and� be the set of possible prior rules. Let φs (τ,π )
be the optimal portfolio weight, at time s, andRps+1(τ,π )=φs (τ,π )′Rs+1 be the
subsequent excess portfolio return when model uncertainty aversion is τ ∈Ω
and the prior rule is π ∈� at all current and past dates.25

At each date t >1, investors choose the model uncertainty aversion parameter
and the prior rule to be the constant value and constant rule that maximize the
in-sample certainty equivalent:

τ ∗,π∗ =argmaxτ∈Ω,π∈�

(
Ēt
[
Rps (τ,π )

]− θ

2
V̄t
[
Rps (τ,π )

])
,

where Ēt
[
Rps (τ,π )

]
and V̄t

[
Rps (τ,π )

]
denote the sample mean and variance

of portfolio returns up until time t, when model uncertainty aversion is fixed
at τ and the prior rule is fixed at π at every past period.26 The choices are used
to form portfolio weights φt (τ ∗,π∗) that realize a return of Rpt+1(τ ∗,π∗)=
φt (τ ∗,π∗)′Rt+1 at time t +1.

We refer to this method as robust BA with optimal uncertainty and priors
when investors choose both τ and π, and φs (τ,π ) solves the robust BA
portfolio choice problem in Section 5.2 for the fixed model uncertainty aversion
parameter τ and the fixed prior rule π . We also consider two special cases:
robust BA with optimal uncertainty, which takes π as given and lets investors
choose τ, and robust BA with optimal priors, which takes τ as given and lets
investors choose π .

8.2 Optimal uncertainty for alternative robust algorithms
The recursive approach to estimating model uncertainty aversion can be applied
to the other robust algorithms in Section 6.8. When the method is applied to the
rolling, historical, Jorion, and Kan-Zhou approaches, φs (τ,π ) solves the robust
portfolio choice problem in Section 6.8 for the fixed model uncertainty aversion
parameter τ . These algorithms do not use priors so their optimal versions only
compute τ ∗. The prior rule, π, does not affect portfolio choices.

8.3 Robust Bayesian averaging with worst-case priors
This section proposes a portfolio choice problem where investors choose the
portfolio that performs the best under the worst-possible prior.As in Section 8.1,
we assume there are many possible prior rules and we let � denote the set of

25 In general, as the next paragraph describes in more detail actual portfolio choices will depend on time-varying
model uncertainty aversion and time-varying prior rules. However, when selecting the current period’s model
uncertainty aversion and prior rule, investors imagine model uncertainty aversion and the prior rule as being
fixed in the past.

26 It is possible, though unlikely in practice, that multiple values achieve the maximum. If multiple values achieve
the maximum, then we randomly select (τ∗,π∗) from the set of all (τ,π ) that achieve the maximum.
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all such rules. For the prior rule π ∈�, let {Pπt (m|Ft−1)}tm=1 be the model
probabilities after model t is born but before Rt is observed. After observing
Rt, the model probabilities are

Pπt (m|Ft )=
L(Rt |m,Ft−1)Pπt (m|Ft−1)∑
m∈Mt L(Rt |m,Ft−1)Pπt (m|Ft−1)

by Bayes rule.
Investors are unsure which prior rule is appropriate and want to choose

portfolios that perform well on all possible priors. The optimal portfolio choices
for a robust BA investor, who uses the worst-case prior, solve the max-min
problem:

max
φt

min
π∈�

⎛
⎝φ′

t μ̂πt +Rf t+1 − 1

τ
log

∑
m∈Mt

Um,t Pπt (m|Ft )

⎞
⎠,

where

μ̂πt =
∑
m∈Mt

μm,t Pπt (m|Ft )

and Um,t , which depends on φt , was defined in Equation (21). Let π∗ be the
minimizing choice of the prior rule.27 For all m, the investor chooses the
probabilities Pt (m|Ft )=Pπ∗t (m|Ft ). Investors achieve good performance on
all priors by choosing the best portfolio under the worst prior. The worst prior
is endogenous and depends upon portfolio choices.

This formulation of worst-case priors incorporates many features from
the recursive multiple-priors method (Epstein and Schneider [2003]); the
smooth ambiguity literature (Klibanoff, Marinacci, and Mukerji [2005]);
and, especially, the T1-T2 approach (Hansen and Sargent [2007a]). The T1-
T2 approach introduces two operators (T1 and T2) and two corresponding
robustness parameters. Our robust optimization problem for a fixed prior,
described in Section 5.2, is a version of the T1 operator, and our τ is its
corresponding robustness parameter. The minimization over prior rules in this
section is an extreme variation on the T2 operator, where investors select prior
rules as the corresponding robustness parameter tends toward infinity.

8.4 Evaluating uncertainty selections
Columns 2 through 8 of Table 8 present certainty equivalent percentiles for
robust optimal uncertainty versions of many algorithms when the set of possible
model uncertainty aversion parameters is Ω = {0,1,2,4,8}. For robust BA
with optimal uncertainty, we use a fixed sharing prior rule with α=1 (perfect
sharing). Robust BA with optimal uncertainty performs much better than

27 If multiple values of π achieve the minimum, then we randomly select π∗ to be one of them.

1363

 at U
niversity of C

hicago on June 14, 2016
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


The Review of Financial Studies / v 29 n 5 2016

Ta
bl

e
8

C
er

ta
in

ty
eq

ui
va

le
nt

pe
rc

en
ti

le
s

fo
r

ro
bu

st
st

ra
te

gi
es

w
it

h
op

ti
m

al
an

d
al

te
rn

at
iv

e
fix

ed
m

od
el

un
ce

rt
ai

nt
y

av
er

si
on

pa
ra

m
et

er
s

R
ob

us
ts

tr
at

eg
ie

s
w

ith
op

tim
al

un
ce

rt
ai

nt
y

R
ob

us
ts

tr
at

eg
ie

s
w

ith
τ

=
2

R
ob

us
ts

tr
at

eg
ie

s
w

ith
τ

=
8

B
A

R
1

R
2

R
3

H
JO

R
K

Z
B

A
R

1
R

2
R

3
H

JO
R

K
Z

B
A

R
1

R
2

R
3

H
JO

R
K

Z

Pa
ne

lA
:

D
ai

ly
da

ta

M
in

0.
82

–
0.

34
0.

20
0.

09
0.

03
0.

19
0.

16
0.

18
–

6.
31

0.
06

0.
07

0.
04

0.
20

0.
18

0.
63

–
0.

29
0.

17
0.

09
0.

02
0.

12
0.

10
25

%
1.

90
0.

82
0.

70
0.

46
0.

21
0.

65
0.

68
1.

69
0.

23
0.

65
0.

41
0.

21
0.

60
0.

60
1.

36
0.

65
0.

37
0.

20
0.

11
0.

30
0.

28
M

ed
ia

n
3.

92
2.

00
2.

20
1.

59
0.

72
2.

15
1.

99
3.

92
1.

77
2.

08
1.

48
0.

60
1.

81
1.

63
2.

67
1.

38
1.

04
0.

73
0.

26
0.

80
0.

69
75

%
6.

26
2.

96
3.

46
2.

98
1.

89
3.

62
3.

40
6.

11
2.

88
3.

34
2.

49
1.

48
3.

04
2.

72
3.

65
2.

20
1.

69
1.

09
0.

60
1.

34
1.

15
M

ax
32

.2
2

34
.0

7
34

.6
0

36
.5

9
41

.3
9

34
.8

1
35

.9
6

24
.9

2
31

.3
6

36
.3

3
35

.3
4

22
.0

6
34

.5
0

33
.4

6
12

.7
6

27
.6

2
22

.2
9

19
.3

5
8.

89
20

.3
3

19
.0

0

Pa
ne

lB
:W

ee
kl

y
da

ta

M
in

0.
46

–
0.

17
0.

17
0.

11
0.

12
0.

18
0.

15
–

0.
60

–
16

.5
1

–
0.

59
–

0.
47

0.
12

0.
15

0.
17

0.
61

–
0.

16
0.

25
0.

19
0.

11
0.

22
0.

18
25

%
1.

94
0.

85
1.

06
0.

96
0.

72
1.

20
1.

23
1.

51
–

7.
54

0.
24

0.
57

0.
76

1.
20

1.
21

1.
35

0.
88

0.
71

0.
63

0.
40

0.
59

0.
60

M
ed

ia
n

4.
25

4.
59

4.
55

3.
83

2.
31

4.
63

4.
38

4.
17

–
0.

77
4.

54
3.

94
2.

00
4.

04
3.

71
2.

68
3.

47
2.

54
2.

06
0.

90
1.

86
1.

65
75

%
7.

24
6.

32
6.

65
6.

94
5.

55
7.

02
6.

64
7.

25
5.

31
6.

62
6.

46
4.

59
5.

98
5.

47
4.

46
4.

75
3.

83
3.

56
1.

93
2.

86
2.

46
M

ax
59

.5
3

44
.7

5
56

.0
0

58
.3

4
51

.9
7

48
.0

9
52

.4
9

45
.0

2
33

.3
1

52
.6

4
60

.1
4

37
.2

8
51

.0
8

48
.1

5
21

.6
6

47
.7

8
40

.6
4

35
.1

5
16

.3
6

33
.5

3
28

.1
8

Pa
ne

lC
:

M
on

th
ly

da
ta

M
in

0.
85

–
63

2.
41

0.
63

0.
43

0.
39

0.
60

0.
59

1.
05

–
33

03
.0

5
–

7.
89

–
1.

68
0.

47
0.

73
0.

79
0.

81
–

63
2.

41
0.

72
0.

60
0.

39
0.

67
0.

59
25

%
1.

55
–

34
7.

13
0.

93
1.

03
0.

84
1.

09
1.

21
1.

43
–

19
10

.8
7

–
0.

72
0.

85
1.

07
1.

19
1.

40
1.

12
–

34
7.

13
0.

97
1.

06
0.

60
0.

96
0.

86
M

ed
ia

n
2.

95
0.

29
2.

20
2.

42
1.

53
2.

04
2.

00
3.

30
–

6.
67

0.
95

2.
46

1.
69

2.
29

2.
05

2.
12

0.
29

1.
89

1.
71

0.
90

1.
37

1.
13

75
%

5.
11

1.
97

4.
19

5.
58

4.
91

3.
94

3.
87

5.
62

–
4.

01
2.

75
5.

68
4.

53
4.

43
3.

81
2.

99
1.

85
3.

88
3.

69
2.

15
2.

90
1.

92
M

ax
9.

79
10

.9
1

13
.3

9
13

.6
1

7.
43

13
.3

0
12

.2
8

8.
67

9.
70

13
.2

0
13

.2
2

6.
27

11
.6

5
9.

73
4.

33
9.

01
10

.2
8

8.
06

2.
83

5.
95

4.
40

Pa
ne

lD
:

Si
m

ul
at

ed
i.i

.d
.d

at
a

M
in

–
0.

50
–

0.
14

–
0.

06
–

0.
04

–
0.

01
–

0.
03

–
0.

02
–

3.
10

–
0.

88
–

0.
33

–
0.

17
–

0.
02

–
0.

10
–

0.
06

–
0.

50
–

0.
14

–
0.

06
–

0.
03

0.
00

–
0.

02
–

0.
01

25
%

–
0.

34
–

0.
07

–
0.

03
–

0.
01

0.
01

–
0.

00
0.

00
–

2.
60

–
0.

71
–

0.
25

–
0.

11
0.

00
–

0.
06

–
0.

04
–

0.
34

–
0.

07
–

0.
03

–
0.

00
0.

01
0.

00
0.

00
M

ed
ia

n
–

0.
29

–
0.

05
–

0.
01

0.
00

0.
01

0.
00

0.
00

–
2.

42
–

0.
64

–
0.

21
–

0.
08

0.
01

–
0.

04
–

0.
02

–
0.

29
–

0.
05

–
0.

01
0.

00
0.

01
0.

01
0.

01
75

%
–

0.
24

–
0.

04
0.

00
0.

01
0.

02
0.

01
0.

01
–

2.
33

–
0.

61
–

0.
17

–
0.

06
0.

03
–

0.
02

0.
00

–
0.

24
–

0.
04

0.
01

0.
01

0.
02

0.
01

0.
02

M
ax

–
0.

07
0.

04
0.

05
0.

03
0.

12
0.

04
0.

04
–

1.
79

–
0.

44
–

0.
07

0.
00

0.
11

0.
04

0.
04

–
0.

07
0.

04
0.

05
0.

04
0.

05
0.

04
0.

03

Pa
ne

lE
:

Si
m

ul
at

ed
re

gi
m

e
ch

an
ge

s

M
in

0.
36

0.
12

0.
03

–
0.

03
–

0.
01

0.
02

0.
02

–
1.

01
–

0.
19

–
0.

13
–

0.
21

–
0.

02
–

0.
01

0.
00

0.
38

0.
15

0.
03

–
0.

03
0.

00
0.

03
0.

02
25

%
0.

55
0.

27
0.

11
0.

06
0.

01
0.

13
0.

14
–

0.
38

0.
04

0.
07

0.
04

0.
01

0.
15

0.
15

0.
55

0.
26

0.
11

0.
06

0.
01

0.
09

0.
08

M
ed

ia
n

0.
64

0.
41

0.
20

0.
10

0.
03

0.
23

0.
22

–
0.

13
0.

26
0.

18
0.

11
0.

04
0.

26
0.

23
0.

66
0.

34
0.

16
0.

09
0.

02
0.

14
0.

11
75

%
0.

74
0.

48
0.

26
0.

14
0.

10
0.

32
0.

33
0.

05
0.

38
0.

28
0.

16
0.

08
0.

33
0.

32
0.

74
0.

38
0.

19
0.

11
0.

04
0.

16
0.

15
M

ax
1.

13
0.

74
0.

56
0.

36
0.

28
0.

63
0.

62
0.

58
0.

81
0.

58
0.

38
0.

23
0.

56
0.

53
1.

00
0.

56
0.

32
0.

19
0.

10
0.

26
0.

23

Ta
bl

e
8

su
m

m
ar

iz
es

th
e

di
st

ri
bu

tio
n

of
ce

rt
ai

nt
y

eq
ui

va
le

nt
s

(w
he

n
th

er
e

ar
e

no
re

st
ri

ct
io

ns
on

po
rt

fo
lio

se
le

ct
io

n)
fo

r
ro

bu
st

ve
rs

io
ns

of
th

e
B

A
,r

ol
lin

g,
hi

st
or

ic
al

,J
or

io
n,

an
d

K
an

-Z
ho

u
ap

pr
oa

ch
es

w
he

n
un

ce
rt

ai
nt

y
av

er
si

on
is

es
tim

at
ed

op
tim

al
ly

(C
ol

um
ns

2
th

ro
ug

h
8)

,w
he

n
un

ce
rt

ai
nt

y
av

er
si

on
is

fix
ed

at
2

(C
ol

um
ns

9
th

ro
ug

h
15

),
an

d
w

he
n

un
ce

rt
ai

nt
y

av
er

si
on

is
fix

ed
at

8
(C

ol
um

ns
16

th
ro

ug
h

22
).

T
he

po
ss

ib
le

va
lu

es
of

m
od

el
un

ce
rt

ai
nt

y
av

er
si

on
ar

e
Ω

=
{ 0,

1,
2,

4,
8}

fo
r

th
e

op
tim

al
un

ce
rt

ai
nt

y
ve

rs
io

ns
in

C
ol

um
ns

2
th

ro
ug

h
8.

T
he

hi
gh

es
t

ce
rt

ai
nt

y
eq

ui
va

le
nt

in
ea

ch
ro

w
is

in
bo

ld
fa

ce
.W

e
se

t
ri

sk
av

er
si

on
to

on
e

fo
r

al
l

al
go

ri
th

m
s.

T
he

ro
bu

st
B

A
st

ra
te

gi
es

,
w

ith
an

d
w

ith
ou

t
op

tim
al

un
ce

rt
ai

nt
y,

us
e

a
fix

ed
sh

ar
in

g
pr

io
r

(α
=

1)
.R

1
,R

2
,

an
d
R

3
re

fe
r

to
ro

lli
ng

ap
pr

oa
ch

es
w

ith
w

in
do

w
si

ze
s

of
10

0,
25

0,
an

d
50

0
da

ys
fo

r
da

ily
da

ta
;

50
,1

00
,a

nd
15

0
w

ee
ks

fo
r

w
ee

kl
y

da
ta

;
an

d
30

,6
0,

an
d

90
m

on
th

s
fo

r
m

on
th

ly
da

ta
.T

he
nu

m
be

r
of

bu
rn

-i
n

pe
ri

od
s

fo
llo

w
s

Ta
bl

e
3.

1364

 at U
niversity of C

hicago on June 14, 2016
http://rfs.oxfordjournals.org/

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


Robust Bayesian Portfolio Choices

optimal uncertainty versions of other algorithms. It also usually outperforms
robust BA with a fixed uncertainty aversion parameter when data are plentiful
(daily data), but it slightly underperforms when data are limited (monthly data).

Columns 9 through 22 of Table 8 display certainty-equivalent percentiles
when model uncertainty aversion is fixed at two or eight. This complements
results in Table 6 for model uncertainty aversion parameters of zero (the
nonrobust case) and four. Overall, on actual data, model uncertainty aversion
parameters of two and four achieve excellent performance, with two slightly
outperforming four. Although a model uncertainty aversion parameter of
eight underperforms, it still usually obtains higher out-of-sample certainty
equivalents than other robust (non-BA) algorithms. On simulated data with
regime changes, model-uncertainty aversion parameters of four and eight
achieve excellent performance, with eight slightly outperforming four.

8.5 Evaluating prior selections
Table 9 presents certainty-equivalent percentiles for robust BA with optimal
uncertainty and priors (BAUP), robust BA with optimal priors (BAP), and
robust BA with worst-case priors (BAW), when the value of α for the sharing
prior is selected from the menu {1, 0.75, 0.5, 0.25, 0.001} and the value of β
for the power prior is selected from the menu {0.5,0.6,0.75,0.9,1}.Results are
also provided for several fixed-sharing and power priors. Generally, the BAUP
algorithm with sharing priors achieves the highest certainty equivalents. When
BAUP underperforms, its certainty equivalents are nearly identical to the best
performer.

Table 9 shows that robust BA with a fixed sharing prior or a fixed power prior
earns higher certainty equivalents than other robust (non-BA) algorithms listed
in Table 6 for a wide range of values for α or β on actual daily, weekly, and
monthly data. The perfect sharing prior (α=1) obtains the best performance,
but other sharing priors with α≥0.25 also usually achieve higher certainty
equivalents than robust versions of the rolling, historical, Jorion, and Kan-Zhou
approaches do. Among fixed power priors, β =0.6 obtains the best results, but
other values between 0.5 and 0.9 also have good performance. One reason
large values of α and relatively small values of β work well is that they both
downweigh older models. The 1/t prior (which is equivalent to the power
prior with β =1) and the equal-weighted prior do not perform as well but are
competitive with other (non-BA) strategies.28

To illustrate the perfect sharing prior (the sharing prior with α=1), Figure 1
plots prior, Pt (m|Ft−1), and posterior, Pt (m|Ft ), model probabilities for
December 17, 18, and 19, 2008 using the BAalgorithm, where the excess returns

28 Results for simulated data are different. With simulated i.i.d. data, it is better to use as long a sample as possible
to estimate means and variances. Hence, sharing priors with small values of α and the power prior with β =1
(which is identical to the 1/t prior) produce the best results. For the simulated data with regime changes, sharing
priors with α≥0.25 work well, but power priors, for all values of β, do not work well.
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Figure 1
An example of model probabilities
Figure 1 plots prior, Pt

(
m|Ft−1

)
, and posterior, Pt (m|Ft ), model probabilities for 3 consecutive days in

December 2008 for the market and the 10 value-weighted industry portfolios using the BA algorithm with
the sharing prior, α=1. Model probabilities are identical under the robust BA algorithm. For each plot, the y-axis
provides the probabilities for the 25 youngest models born on the days listed on the x-axis. The three dashed
lines correspond to three major financial events. On November 25, 2008, the Federal Reserve announced the
first quantitative easing (QE) policy. On December 1, the Federal Reserve released more details about QE. On
December 16, the Federal Reserve lowered the federal funds rate.

are on the market and the 10 value-weighted industry portfolios.29 Recall that
November 25 and December 1 and 16 are important dates in financial history.
On November 25, 2008, the Federal Reserve announced the first quantitative
easing (QE) policy. On December 1, the Federal Reserve released more details
about QE, and on December 16, the Federal Reserve lowered the federal funds
rate.30 The priors and posteriors show that the total probability of all models
born before November 25 is much less than the total probability of models
born after. The posteriors substantially vary from day to day: on December
18, models born after December 1 receive negligible probabilities, whereas,
on December 17 and 19, they receive substantial probability. The priors for
models born after December 1 are similar and smooth on December 17, 18,
and 19.

The solution to the BAW problem, where the agent selects from a menu of
possible sharing priors (different values of α), entails that the agent chooses
large values of α a majority of the time, on most datasets. This happens because
newer models are less precise and thus usually more worrisome for a robust

29 The probabilities are identical under the robust BA algorithm.

30 See Gagnon and others (2010) for a discussion of these events.
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agent than older models are.31 The solutions to the BAP and BAUP problems
lead to investors choosing α to be near one, most of the time. This happens
because large values of α consistently work well throughout our sample. For
example, investors choosing the best prior in 1960, looking only at data between
1926 and 1959, typically choose the same prior rule, as investors who have
access to all data between 1926 and 2011. Even though there is little evidence
that investors in 1926 used a perfect sharing prior, they would have learned to
use a large value of α over time.

In detailed results available upon request, when investors use the BAP
algorithm, they choose the perfect sharing prior 50% or more of the time on 19
of 24 daily datasets. On 11 of these datasets, they choose the perfect sharing
prior 100% of the time. Three of the five datasets for which perfect sharing
is chosen less than 50% of time, involve the short-term reversal portfolios.
Results are virtually identical for the BAUP algorithm and similar for the
BAW algorithm. Because, investors usually choose large values of α when
given the option, we view robust BA with a fixed perfect sharing rule (α=1)
as producing a computationally simpler approximate solution to the BAP and
BAUP problems, which imposes the usually optimal prior rule.

9. Reasonable Uncertainty

In previous sections, because investors suspect that their best available
approximating specification of excess returns could be wrong, they compute
portfolio choices by solving a robust optimization problem. The solution
to the robust optimization problem determines an alternative specification
that investors, with a given value of model uncertainty aversion, should be
concerned about. As model uncertainty aversion increases, the alternative
specification will be farther from the approximating specification and represent
a relatively worse outcome. This section investigates if a model uncertainty
aversion parameter of four, in the robust BA algorithm, yields a plausible
alternative specification that is not too far from the approximating specification.
We measure plausibility by computing detection-error probabilities, which are
the probabilities that an econometrician would mistakenly classify observations
as coming from the approximating specification when they are actually
generated by the alternative specification or vice versa.

Using the notation in Section 5, the approximating and alternative
specifications take different stands on the probability density function (pdf) of
zt+1. The approximating specification assumes that the pdf of zt+1 is f (zt+1|Ft )
and the alternative specification takes the pdf of zt+1 as f (zt+1|Ft )�∗

t (zt+1),
where the formula for �∗ is presented in Equation (17). The specification of f
and the optimal perturbation �∗ vary across algorithms. For example, robust

31 Robust investors with worst-case priors do not always find newer models more worrisome. Even though newer
models are less precise, the worst-possible model can be an older model with dire predictions.
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investors with Bayesian averaging beliefs take f to be a mixture of normals
and investors with rolling expectations take f to be normal.

At each date, we compute detection-error probabilities by simulating a large
number of time series from the approximating density and an equal number
of time series from the alternative density. We classify each realization as
either coming from f or f �∗

t , using likelihood methods. We estimate the
detection-error probability with the simulated rate of misclassification. If the
approximating and alternative specifications are nearly indistinguishable, we
expect the detection error to be near 50% since (asymptotically as the number
of simulations tends towards infinity) our selection method will never be
wrong more than 50% of the time, no matter how similar the specifications.
If the approximating and alternative distributions are far apart, we expect the
detection-error probability to be close to zero because the approximating and
alternative specifications can easily be distinguished.

If the detection-error probabilities are large, then a robust agent’s worries
about the approximating specification are justified. If detection errors are small,
then the robust agent may be worrying too much about nearly impossible
outcomes. The threshold level of the detection-error probability, that determines
large and small, is a matter of personal preference. On our view, a reasonable
threshold is about 10% or 20%, so that robust agents should worry about
specifications with detection-error probabilities greater than 10% or 20%. We
find that the median (over time) detection-error probability for the robust BA
algorithm is greater than 30% for all of our daily, weekly and monthly actual
datasets when model uncertainty aversion is four and the prior rule is perfect
sharing. This suggests that robust agents are justified in worrying about the
alternative specification implied by the robust BA algorithm.32

10. Conclusion

This study proposes robust and nonrobust BA algorithms with a large
number of models that preserve the simplicity of Markowitz’s approach and
achieve superior out-of-sample performance on a majority of 24 datasets. The
approaches are fast, are adaptable to a large number of assets, and work
in nonstationary environments. Our methods are similar to standard rolling
window methods except that we do not prespecify the window size. Instead,
we estimate the probability that each possible window size describes past data.
The probabilities are re-computed each period based on available statistical
evidence.

On the vast majority of datasets, the robust BAalgorithm achieves decisively
higher Sharpe ratios and certainty equivalents than rolling window schemes, the
historical-expectations method, the 1/N approach, and other leading strategies

32 We compute detection-error probabilities by adapting methods proposed by Hansen and Sargent (2007b) and
others. The computational details are available upon request.
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do. The robust BA algorithm also outperforms the nonrobust BA algorithm
by achieving statistically higher out-of-sample Sharpe ratios (when short
selling is prohibited) and statistically higher certainty equivalents (when short
selling is allowed). The robust and nonrobust BA algorithms are statistically
indistinguishable on out-of-sample Sharpe ratios (when short selling is allowed)
and certainty equivalents (when short selling is prohibited).

To avoid arbitrary selections of a model uncertainty aversion parameter and
a prior rule, we extend robust BA to allow agents to recursively choose the
optimal value of model uncertainty aversion and the optimal prior rule at each
date using only currently available information. On most datasets, the recursive
extensions improve the performance of robust BA. We also show that robust
BA achieves excellent performance for a wide range of fixed model uncertainty
aversion parameters and a wide range of fixed prior rules.

We leave it to future work to improve the performance of the robust BA
algorithm on reversal portfolios. Other limitations of our work include that
we ignore background risk, taxes, transaction costs, and the dynamic nature
of decision making. An interesting extension is to combine the robust BA
algorithm with beliefs in asset pricing models as in Pastor (2000).

Appendix A. Simulated Data

We simulate daily data under two different processes. The first data generating process assumes
i.i.d. returns and follows the specification of MacKinlay and Pastor (2000) and Garlappi, Uppal,
and Wang (2007). We let the daily risk-free rate be i.i.d. normal

Rf t ∼N
(

0.02

252
,

0.022

252

)

so that the yearly risk-free rate approximately has a mean of 2% and a standard deviation of 2%.
There is a single underlying factor that drives excess returns on 10 available risky assets. The daily
distribution of the factor is

gt ∼N
(
μ̄g,σ̄

2
g

)
,

where μ̄g =0.08/252 and σ̄g =0.16/
√

252 are constant over time. The yearly approximate mean of
the factor is 8% with a standard deviation of 16%. Excess returns on the 10 assets are distributed

Rt ∼N (Bgt ,�s ),

where B is a 10-dimensional vector and �s is a 10×10 diagonal matrix. The values of B are
constant over time and evenly spaced between 0.5 and 1.5. The diagonal values of �s are also
constant over time and randomly selected from a uniform distribution over the interval [ 0.1

252 ,
0.3
252 ],

so that yearly idiosyncratic variances are distributed uniformly over the interval [0.1,0.3].33

The second data-generating process allows for regime changes in the mean of the single factor.
We assume

gt ∼N
(
μgt ,σ

2
g

)

33 The parameters used in the i.i.d. simulations are the same as in Garlappi, Uppal, and Wang (2007), except we
adapt them to the daily frequency by assuming there are 252 trading days in a year.
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and every day μgt shifts with 50% probability. When there is a regime change:

μgt+1 ∼N
[
μ̄g +ρ

(
μgt−μ̄g

)
,σ 2
μg

]
,

and when there is no regime change: μg+1 =μgt . We let ρ =0.95, σμg =0.001, and set

σg =

√
σ̄ 2
g − σ 2

μg

1−ρ2

so that the unconditional variance of the factor gt is the same as in the i.i.d. case above.34 We limit
the scope of regime changes to the mean of the single factor and assume the rest of the specification
and parameters are identical to the i.i.d. case.35

For each data-generating process we create 41 datasets. Each dataset has 12,000 observations
on daily returns.

Appendix B. Standard Errors of Sharpe Ratios and Certainty
Equivalents

To evaluate the performance of portfolio choice rules we need the standard errors of the difference
of out-of-sample Sharpe ratios and the difference of out-of-sample certainty equivalents. We use
generalized method of moments (GMM) (Hansen [1982]) to derive asymptotic standard errors that
are valid under many specifications of disturbances. We choose GMM because we want to make
as few assumptions as possible on out-of-sample quantities. Our standard errors do assume that
asset returns are stationary so that their unconditional means and variances exist.36 To compute
standard errors, we use standard GMM formulas with analytical derivatives of the relevant moment
conditions and the Newey and West (1987) estimate of the spectral density at frequency zero. The
following subsections provide the moment conditions for the difference of out-of-sample Sharpe
ratios and the difference of out-of-sample certainty equivalents.37

B.1 Sharpe ratios
Let R∗

pt+1 be a benchmark excess portfolio return and Rpt+1 be the portfolio return using an
alternative method. We construct moment conditions so that the Sharpe ratio of the alternative
portfolio return is one parameter and the difference of the Sharpe ratios is another parameter. The
population moment conditions are

E
[
Rpt+1 −sσ ]=0, (B1a)

E
[(
Rpt+1 −sσ )2 −σ 2

]
=0, (B1b)

E
[
R∗
pt+1 −(s−d)σ ∗]=0, (B1c)

E

[(
R∗
pt+1 −(s−d)σ ∗)2 −σ ∗2

]
=0, (B1d)

where σ is the standard deviation of the alternative portfolio, σ ∗ is the standard deviation of the
benchmark portfolio, s is the Sharpe ratio of the alternative portfolio, and d is the difference of the
Sharpe ratios of the two portfolios.

34 We assume the random variables determining regime changes and shifts in μgt are independent of each other
and independent of the random variables determining factor values and asset returns.

35 We choose the new parameters in the regime-change specification so that simulated autocorrelations of the factor
roughly match the actual autocorrelations of daily, monthly, and yearly value-weighted market excess returns.

36 As discussed earlier, the BAportfolio choice method is designed to work well even when returns are not stationary.

37 In this appendix we recycle notation. Some of the notation conflicts with definitions in earlier sections.
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Let Ē denote the sample mean and σ̄ denote the sample standard deviation. GMM estimates

σ̂ = σ̄
(
Rpt+1

)
, ŝ =

ĒRpt+1

σ̄
(
Rpt+1

) , σ̂ ∗ = σ̄
(
R∗
pt+1

)
, d̂ =

ĒRpt+1

σ̄
(
Rpt+1

)− ĒR∗
pt+1

σ̄
(
R∗
pt+1

)
of the parameters (σ,s,σ ∗, and d) from the sample moments corresponding to the population
moments (B1a) through (B1d) are exactly identified because there are four parameters and four
moments. The formulas verify that ŝ is the sample Sharpe ratio of the portfolio of interest and d̂
is the sample difference of the Sharpe ratio of the portfolio of interest and the Sharpe ratio of the
benchmark portfolio.

B.2 Certainty equivalents
We imitate the approach in the previous section and construct moment conditions so that the
certainty equivalent of the alternative portfolio return is one parameter and the difference of the
certainty equivalents is another parameter. The population moment conditions are

E
[
Rpt+1 −μ]=0, (B2a)

E

[
μ+Rf t+1 − θ

2

(
Rpt+1 −μ)2 −q

]
=0, (B2b)

E
[
R∗
pt+1 −μ∗]=0, (B2c)

E

[
q−μ∗ −Rf t+1 +

θ

2

(
R∗
pt+1 −μ∗)2 −ε

]
=0, (B2d)

whereμ is the mean of the alternative portfolio,μ∗ is the mean of the benchmark portfolio, q is the
certainty equivalent of the alternative portfolio, and ε is the difference of the certainty equivalents
of the two portfolios.

Let V̄ denote the sample variance. GMM estimates

μ̂= Ē
(
Rpt+1

)
, q̂ = Ē

(
Rpt+1

)
+Rf t+1 − θ

2
V̄
(
Rpt+1

)
,

μ̂∗ = Ē
(
R∗
pt+1

)
, ε̂= Ē

(
Rpt+1

)− θ

2
V̄
(
Rpt+1

)−Ē(R∗
pt+1

)
+
θ

2
V̄
(
R∗
pt+1

)
of the parameters (μ,q,μ∗, and ε) from the sample moments corresponding to the population
moments (B2a) through (B2d) are exactly identified because there are four parameters and four
moments. The formulas verify that the GMM estimate of q̂ is the sample certainty equivalent of
the alternative portfolio and ε̂ is the sample difference of the certainty equivalent of the portfolio
of interest and the certainty equivalent of the benchmark portfolio.

Appendix C. Certainty Equivalents for Robust Preferences

Which preferences to use when computing certainty equivalents is partly a philosophical question.
On our view, the goal of agents is to maximize their nonrobust preferences. Having a large degree
of model uncertainty aversion is interpreted as a device to obtain good out-of-sample returns and
maximize Equation (28). Consider three distributions:

1. f (zt+1) is the investor’s best (ex-ante) approximation to the distribution of zt+1,

2. �∗(zt+1)f (zt+1) is an alternative (or a constrained worst-case) distribution of zt+1 that
robust agents worry about, and
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3. q (zt+1) is the actual (unknown to the investors) distribution of zt+1.

The objective of both robust and nonrobust investors is to maximize the mean-variance criteria
where the distribution of zt+1 is q (zt+1). If the distribution q was known, then

f (zt+1)=�∗(zt+1)f (zt+1)=q (zt+1)

for all zt+1 and robust and nonrobust investors would make the same portfolio choices.38 However,
in practice, because neither investor knows the actual distribution q, they use approximations
when making portfolio choices. Nonrobust investors use the best approximation from previous
data, f . Robust investors use the alternative distribution, �∗f. Ex post, after observing aspects of
the distribution q, all investors form better estimates of the distribution q, and use the estimates
and standard mean-variance preferences to evaluate their past portfolio choices. Consequently, we
(as econometricians) also use ex-post estimates of q and standard mean-variance preferences, to
compute out-of-sample certainty equivalents.

There are other plausible interpretations of certainty equivalents that could lead to
different techniques for computing certainty equivalents. For example, robust preferences are
observationally equivalent to risk-sensitive preferences. If we assume investors have risk-sensitive
preferences (see Formula 18, as well as Hansen and Sargent [2007b]) then it is natural to compute
certainty equivalents using these preferences.39

We follow a similar approach when computing out-of-sample certainty equivalents for robust
and nonrobust versions of Jorion’s approach and Kan-Zhou’s rule, as well as the 1/N portfolio, the
market portfolio and the minimum variance portfolio. For each algorithm, we use Formula (28) to
compute out-of-sample certainty equivalents.
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