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Abstract

We study a simple model of economic growth where society’s preferences are a function of
consumption per capita and climate quality; and the specification of the climate dynamics is
inspired by recent work in climate science. The model is estimated to establish a reference model
and we develop a new method that determines the reasonable size of a set of surrounding models
which are difficult to distinguish from the reference model. We show that robust agents who
deny the effects of climate change on the economy, behave very much like agents who believe
climate changes are real.

This paper conducts an empirically disciplined robustness analysis in the context of a simple

Ramsey, Cass, Koopmans model of economic growth where society’s preferences at any date are a

Constant Elasticity of Substitution (CES) function of consumption per capita; and climate qual-

ity and the specification of the climate dynamics is inspired by recent work in climate science by

Matthews et al. (2009) and Matthews, Solomon and Pierrehumbert (2012). The model is estimated

to establish a reference model which is surrounded by a set of alternative models which are difficult

to distinguish from the reference model. In the reference model, climate changes affect both pro-

ductivity and preferences, and we demonstrate that the two effects have different implications for

optimal choices.

We develop a new method to calibrate robustness parameters in the spirit of computing detection

probabilities but much less computationally demanding. This computation empirically disciplines

the robustness analysis via a parameter that determines the size of the set of surrounding models.

We show that robust agents who deny the effects of climate change on the economy, behave very

much like agents who believe climate changes are real.

There are five main components of our analysis each discussed in a section of the paper. Section

1 provides an historical context, informal motivation, and an overview of our main results.

∗Anderson: Northern Illinois University; Department of Economics, 515 Zuluaf, DeKalb, IL 60115;
ewanderson@niu.edu. Brock: University of Wisconsin-Madison and University of Missouri, Columbia; Economics
Department, 1180 Observatory Drive, Madison, WI 53706-1393 and 118 Professional Building, Columbia, Missouri,
65211-6040; wbrock@ssc.wisc.edu. Sanstad: Computation Institute, University of Chicago; 5735 South Ellis Avenue,
Chicago, IL 60637; alanhs@uchicago.edu.

1



 Electronic copy available at: http://ssrn.com/abstract=2844980 

Section 2 develops the model we use. Preferences are time additively separable where period

preferences are a power function of a CES function of consumption per capita and climate quality.

Using a power function of a CES function allows us to discuss the impact of different values of

these two key parameters of preferences on the robustly optimal path of economic development and

change in the temperature anomaly of the Intertemporal Elasticity of Substitution (IES) (related to

the parameter in the power function) and the Elasticity of Substitution (related to the parameter

in the CES function) between consumption per capita and our measure of climate quality. Our

measure of climate quality declines as the temperature anomaly rises.

Section 3 estimates the parameters in our economic-climate model using Generalized Method

of Moments (GMM). Tables 1-5 display GMM estimates of parameters the determine population

growth, capital accumulation, temperature change, output, consumption and energy usage. An

appendix describes the data.

Section 4 selects parameters based on our estimations. We use the estimated model as a baseline

and the estimated standard errors of the parameters to define a tubular neighborhood of the baseline

model. Given our data set, we calibrate robustness parameters to define the size of the model

uncertainty set surrounding our baseline estimated model that we wish to robustify any policy

action against. The idea here is that given our data set it should be hard to detect a model that

departs from the baseline.

Section 5 conducts a multitude of simulations of the model for various values of the robustness

parameter ranging from near zero robustness (where the analyst is almost certain she has the “right”

specification, i.e. the baseline or reference specification is correct) to a sizable amount of robustness

where doubts are much larger but within the range of empirically disciplined plausible doubts.

1 Overview

1.1 Climate change and uncertainty

Uncertainty is the hallmark of global climate change and the analysis of policies to address it.

While the basic physical principles governing the response of the planetary atmosphere to increasing

concentrations of greenhouse gases (GHGs) have been known since the nineteenth century, the

detailed workings of the climate system and how it will be affected by increasing GHGs produced

by human society remain imperfectly understood (APS 2013). Moreover, the capacity of numerical

general circulation (climate) models to accurately predict the future course of the global climate

system over multiple decades or longer is very limited, and subject to significant intra- and inter-

model uncertainty.
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Analogously, in the economics of climate change there has been considerable debate regarding

appropriate principles for analyzing the costs and benefits of GHG abatement, particularly regarding

the problem of discounting over the very long run. Even conditional on discounting and other

assumptions, however, economic and policy analysis of abatement strategies continues to be subject

to extreme uncertainty.

This state-of-affairs and the reasons behind it are receiving heightened attention from both scien-

tists and economists, focusing implicitly or explicitly on “integrated assessment (IA)” models, which

represent both earth system and economic dynamics, and their interactions, in reduced forms, and

which are the predominant analytical tools for policy analysis of climate change on a global scale.

Although uncertainty has been addressed in some of the IA literature, since their initial development

more than two decades ago integrated assessment models have been and continue to be primarily

deterministic. Pindyck (2013) argues that IA models “are of little or no value for evaluating alterna-

tive climate change policies,” essentially because they fail to acknowledge and address fundamental

uncertainties in both the workings of the climate system, and the future economic damages that

may result from climate change. In a broad-ranging critique of IA modeling, Stern (2013) calls for

a “new generation” of such models that would, among other improvements, be developed explicitly

within a risk-management framework rather than on the deterministic foundations of the current

generation.

Similarly, Roe (2013) suggests that in view of the persistent scientific and economic uncertainty

pertaining to global climate change, particularly including key IA modeling assumptions, technical

and quantitative analysis to develop policies may have “...reached the point of diminishing returns.”

He argues, moreover, that the appropriate path forward for deliberating on and developing policies

to address climate change is therefore to give significantly greater weight to moral and ethical

considerations.

It is important to emphasize that, notwithstanding their critical perspectives on IA modeling,

Pindyck and Stern hold the mainstream economic opinion that large-scale GHG abatement starting

in the present has already been demonstrated to be fully justified on cost-benefit grounds. Never-

theless, their observations and Roe’s observations highlight the importance of uncertainty analysis

in climate economics and modeling as well as the treatment of moral and ethical issues.

Building on previous research in integrated assessment and several other areas of economics as

well as in climate science, this paper addresses both of these topics. To analyze uncertainty, we

apply a methodology developed by macroeconomists based on the concept of “robustness to model

uncertainty” (Hansen and Sargent 2008). In this approach, decision-makers employ mathematical

models of systems such as economies but acknowledge the possibility that their chosen model may
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not in fact be an accurate representation of the given system. That is, they confront fundamental

model uncertainty, and seek to make decisions that are robust to this type of uncertainty – i.e., that

will yield acceptable outcomes even in the case of an incorrect model. To incorporate the moral and

ethical dimensions of climate change, we explicitly include the state of the climate in decision-making

regarding the abatement of GHG emissions – that is, in addition to strictly economic considerations.

There have been several previous papers adapting robustness analysis of this type to the eco-

nomics of climate change. There has also been previous work in environmental economics on how

“environmental quality” affects decision-making. However, the work we describe in this paper is the

first to combine these two approaches. Moreover, our particular treatment of robustness analysis is

new to the integrated assessment literature. In addition, we adopt a reduced-form representation of

the climate based on the work of Matthews et al. (2009) and Matthews, Solomon and Pierrehumbert

(2012), and this feature is also new.

1.2 Existing deterministic and stochastic models

High-dimensional economic-climate models, which link partial or general equilibrium models of the

world economy with intermediate complexity climate models and other parts of the carbon cycle as

well as ecosystem models, are primarily deterministic. The economic components of these models

are based on a calibration philosophy that does not in most instances include statistical procedures

for parameterization and associated uncertainty quantification (Dawkins, Srinivason and Whalley

2001). Moreover, the size of these large models generally precludes the use of stochastic optimization

methods – a consequence of the “curse of dimensionality.”

In parallel to the development of these large IA models, a substantial body of work has been

conducted using lower-dimensional IA models following the Ramsey-Cass-Koopmans (RCK) optimal

control framework, in which a perfectly foresighted representative decision-maker chooses dynamic

paths of consumption and investment – in the context of a representative production function which

yields output given capital and labor inputs – to maximize discounted intertemporal utility. This

research has to a very large extent been based directly or indirectly on the DICE (Dynamic Integrated

Climate Economy) model of Nordhaus (2008), which has come to play a paradigmatic role in this

field. In brief, the DICE template augments the basic RCK – optimal growth model with a reduced-

form specification of the climate; economic activity produces GHG emissions as a by-product, thereby

increasing global temperature, which in turn acts to reduce output. Abating these emissions –

trading off with consumption and investment – is then an additional decision dimension. In the

DICE paradigm also, most analysis has been deterministic. The tractability of the RCK approach,

however, has facilitated various forms of stochastic analysis by a number of researchers. Following
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are a number of key examples.

Nordhaus and Popp (1997) developed the “PRICE” (PRobabilistic Integrated model of Climate

and Economy) variation of DICE and used it to compare five methods of estimating the value of in-

formation regarding eight uncertain parameters, analyzed singly and jointly. Kolstad (1996) created

and solved a stochastic version of DICE to analyze the influence optimal policy of learning about

damages caused by climate change. Extending this work, Kelly and Kolstad (1999) implemented

a stochastic variant of DICE, solved by dynamic programming, to conduct a Bayesian analysis of

learning about the relationship between GHG levels and global mean temperature changes, in the

presence of a stochastic shock to temperature. Keller, Bolker and Bradford (2004) adapted earlier

versions of DICE (Nordhaus 2008, and references) to include a climate-related environmental thresh-

old – the collapse of the Atlantic thermohaline circulation due to temperature increase - learning,

and uncertainty in the climate sensitivity, and solved this model using a global optimization method.

Crost and Traeger (2011) developed a version of DICE in a recursive dynamic programming frame-

work with uncertainty in damages and Epstein-Zin utility to study the different effects of risk, risk

aversion, and aversion to intertemporal substitution. Jensen and Traeger (2013) use the stochastic

DICE framework to study how uncertainty in long-run economic growth affects optimal climate

policy.

The most ambitious extension of a DICE type framework to the stochastic case is the work of

Cai, Judd and Lontzek (2012a), hereafter, “CJL”. Their reduced-form climate has three layer carbon

cycle dynamics and a two layer atmosphere and ocean temperature dynamics. When these state

variables are added to the state variables from the economic dynamics, there are a total of 8 state

variables. The Cai, Judd and Lontzek (2012b) paper extends their work to include abrupt changes

in climate dynamics, e.g. tipping points and the impact this possibility has upon the solution of the

model. Tipping points can be viewed as a form of “catastrophic” climate change and are, indeed,

catastrophic, if they are large enough (Cai, Judd and Lontzek 2013a,b, Lenton and Ciscar 2013).

The CJL model is solved by a sophisticated (and quick) optimization algorithm that they have

developed which is quite readily adaptable to other dynamic models.

1.3 Robust models

Broadly speaking, the work we have sketched above is in the domain of “parametric uncertainty

analysis.” That is, within a given model structure, key inputs or parameters – such as those describ-

ing the dynamics of the climate system or the economy – are assumed to be stochastic and to have

associated probability distributions. The decision-making agent(s) represented in the model then act

according to, for example, expected utility maximization or some other stochastic optimization pro-
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cedure. This type of approach reflects long-standing analytical frameworks in economics including

dynamic stochastic general equilibrium modeling.

By contrast, as noted previously the robustness analysis methodology developed by Hansen and

Sargent posits that the underlying structure of the model itself is uncertain – a state-of-affairs that

well characterizes both climate economics and climate science. One way of framing this assump-

tion is to suppose that there is a set of “candidate” probability distributions representing model

characteristics - described as a situation of “ambiguity” – and that the decision-maker is averse to

this ambiguity and acts accordingly. Building on technical tools from fields including, risk-sensitive

optimal control, Hansen and Sargent have created a theory to analyze this category of problem and,

in particular, to identity robust decision rules given model uncertainty or ambiguity.

Several researchers have introduced robustness and ambiguity aversion into climate economics

and integrated assessment modeling. Following Hansen and Sargent (2001), Hennlock (2008, 2009)

and Sterner and Hennlock (2011) incorporate robustness with respect to uncertainty regarding the

product of climate sensitivity and equilibrium radiative forcing, in a model with both “clean” and

“dirty” energy sectors, both of which have a form of endogenous technical change. Lemoine and

Traeger (2011) adapt DICE to include an uncertain tipping point and learning about the threshold

that triggers it, and aversion to ambiguity regarding the threshold’s distribution. Li, Narajabad

and Temzelides (2014) adapt the model of Golosov et al. (2014), assuming that climate change

directly damages – i.e., reduces – the capital stock, with include model uncertainty embodied in a

stochastic parameter governing the magnitude of this effect, and analyze robustness with respect

to this uncertainty in a dynamic two-person zero-sum game, pitting the social planner against a

malevolent agent (who controls the capital stock damage).

In this paper, the basic economic dynamics are specified as a conventional aggregative growth

model with capital accumulation, here representing the global economy, and capital, labor, and fossil

fuel inputs into production. Basic climate dynamics are specified as a trend in the temperature

anomaly driven by cumulative fossil fuel emissions which is a specification inspired by Matthews

et al. (2009) and Matthews, Solomon and Pierrehumbert (2012).

There are many other complementary approaches for robustness, such as Bayesian approaches,

which are described in Appendix A.

1.4 Cumulative climate response

Using numerical simulations performed by a set of general circulation (climate) models, Matthews

et al. (2009) and Matthews, Solomon and Pierrehumbert (2012) have shown within a large range

of cumulative emissions the increase in global average yearly temperature caused by increasing
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GHG emissions is approximately linearly related to cumulative emissions – they designate the slope

parameter in this relationship the “Cumulative Climate Response (CCR).” The estimated value of

this quantity varies across the set of climate models they simulated, and this variation, documented

by Matthews et al., can be used as a measure of fundamental uncertainties in climate models. Given

this wide variation in CCR’s we can infer that climate scientists may not agree on what baseline

model to estimate. While it is beyond the scope of this paper to fully explore this question, potential

lack of agreement on a baseline model prompts us to discuss other methods of dealing with robustness

analysis.

Uncertainty is incorporated into the model by adding stochastic shocks to both the economic

(production) and the climate – temperature – dynamics. These shocks represent the decision-makers

doubts about the underlying models’ specification of economic production, technology change, cli-

mate change, and the economic costs of climate change. These doubts are addressed by incorporating

robustness into the decision rule used to solve the model.

1.5 Robustness and consensus policies

We consider several different reference models. One of the reference models uses optimal param-

eter estimates which entail that anthropogenic climate change has a large affect on productivity

and preferences. Another reference model assumes there is no anthropogenic climate change effect

on production and climate quality. In the absence of robustness, optimal policy under these two

reference models is drastically different.

Now suppose that policy makers have small doubts that the reference model is correct. As

compared to the non-robust case, policy makers who use the reference model with optimal estimates

will only slightly change their behavior, whereas policy makers who deny the effects of climate

change on production and air quality will make huge changes in their behavior. Figure 4 show that

robustly optimal energy use is strongly restrained in order to keep total emissions low enough to

hedge against small doubts about the specification of its baseline model. We also show that the

resulting optimal decisions of the two robust agents are somewhat similar which suggests that if

policy makers could agree to adopt robust decision making procedures then there would be much

less disagreement about optimal policies.
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2 A climate-economic model

Let c denote consumption per capita and Q a measure of climate quality. We specify additively

separable preferences with the period utility of a representative individual defined as

U (c,Q) =
u (c,Q)

1−γ − 1

1− γ

where

u (c,Q) = [ϕcτ + (1− ϕ)Qτ ]
1
τ .

Hence the Intertemporal Elasticity of Substitution (IES) between utilities between periods is IES=1/γ,

and the elasticity of substitution between consumption per capita and climate quality is 1/(1− τ).

We introduce a parameter, θ, for the robustness analysis, where the “size” of the set of departures

from the baseline model increases as θ increases. E.g. θ = 0, indicates that we have no doubts at

all about the baseline model and our doubts about our specification increase as θ increases. When

γ = 1 we interpret preferences are logarithmic. Appendix B presents one possible argument for the

inclusion of climate quality in preferences based on ethical considerations.

In our dynamic finite horizon model preferences are

t0+J−1∑
t=t0

βt

U (Ct
Lt
, Qt

)
+

β

2θ

∑
i=m,a,d

G2
i,t

+

βJW (Kt0+J , Rt0+J ,Mt0+J , St0+J , At0+J , Gd,t0+J−1, Lt0+J) (1a)

and the constraints are for t = t0, t0 + 1, . . . t0 + J − 1

logKt+1 = log K̄t+1 + ε σkek,t+1 (1b)

Rt+1 = Rt − Ft + µr (1c)

Mt+1 = (1− κm)Mt + λFt − σmGm,t (1d)

St+1 = (1− κs)St + ε σses,t+1 (1e)

logAt+1 = logAt + µa − σaGa,t + ε σaea,t+1 (1f)

logDt = (ωd − σdGd,t−1) |Tt − T |p (1g)

logLt+1 = log(1 + n) + logLt + ε σlel,t+1 (1h)
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where

Yt =
At
Dt
Kα
t F

ν
t L

1−α−ν
t (1i)

K̄t+1 = φt [Yt + (1− δ)Kt] (1j)

Ct = (1− φt) [Yt + (1− δ)Kt] (1k)

Tt = T +Mt + St Qt =
1

Dt
(1l)

1 ≥ φt ≥ 0 Ct, Ft, Rt+1,Kt+1 ≥ 0 (1m)

At time t, we interpret Ct as consumption, Lt as population (which we assume is equal to the

labor force), Kt as capital, Yt as output, Tt as temperature, Yt+(1−δ)Kt as resources, (1−φt) as the

fraction of resources consumed, log K̄t+1 as the mean of next period’s log capital (logKt+1), Ft as

fossil fuel usage, Rt as the stock of remaining available fossil fuels, Mt as man made climate changes,

St as short run shocks to temperature, At as productivity, and Dt, as damages to productivity.

We let ek,t+1, es,t+1, ea,t+1, and el,t+1 be i.i.d. standard normal random variables. The parameter

ε multiplies the shocks and facilities a small-noise expansion described in later sections. We let β be

the subjective discount factor which includes terms related to population growth. We assume p ≥ 0,

0 < β < 1, τ ≤ 1, γ > 0, α > 0, ν > 0, and (α + ν) < 1. We let T be the temperature level at a

pre-industrial date far in the past.

We let J be the social planner’s horizon and we let the terminal value function be

W (K,R,M, S,A,Gd,−1, L) = U

(
C

L
,Q

)

where

T = T +M + S, D = exp [(ωd − σdGd,−1) |T − T |p] , Q =
1

D
,

Y =
A

D
KαF νL1−α−ν , C = Y + (1− δ)K, F = R.

The terminal value function assumes all remaining energy is immediately used in production and all

remaining capital is immediately consumed.

The social planner wants to maximize the expected value of 1a by choice of adaptive process

for φt and Ft; and minimize it by choice of adaptive process for Gm,t, Ga,t and Gd,t subject to the

constraints 1b through 1m.

Because realistic values of κm are known to be near zero by climate scientists, our specification

of man-made damages (Mt) approximately captures the CCR model of Matthews et al. (2009) and
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Table 1: Estimates of population growth. This table uses GMM to estimate the mean, n, and
standard deviation, σl, of annual world population growth rates from 1952 to 2011. Asymptotically
valid standard errors are listed in parentheses below estimates and are computed using the method
of Newey and West (1987) with 10 lags.

Parameter Estimates
n σl

0.0172 0.002
(0.0008) (0.0004)

Matthews, Solomon and Pierrehumbert (2012).

3 Estimating the climate-economic model

In this section, we separately estimate many of the equations in the model assuming our reference

model is correct. In the reference model, ε = 1 and there is no robustness (θ = 0), so that all of the

G’s are zero. All the estimations use the Generalized Method of Moments (Hansen 1982) method.

Section A estimates the population equation, Section B estimates the capital evolution equation,

Section C estimates the temperature equation, Section D estimates the output equation, and Section

E estimates preferences. However, as is the case in many economic models, our model of preferences

has only very weak empirical support and the estimation of preferences may be more appropriately

thought of as a calibration exercise. Appendix C describes the data.

3.1 Estimating population growth

We estimate n and σl using Generalized Method of Moments (GMM) from the moment conditions

E [logLt+1 − logLt − log(1 + n)] = 0,

E
[
(logLt+1 − logLt − log(1 + n))

2 − σ2
l

]
= 0

which follow from Equation 1h. Since there are two moments and two parameters, the parameters are

exactly identified and the GMM test of overidentifying restrictions is not available. The parameter

estimates are presented in Table 1 and are

n = exp
[
Ē (logLt+1 − logLt)

]
− 1,

σl =
√
V̄ (logLt+1 − logLt − log(1 + n))
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Table 2: Estimates of the capital evolution process. This table uses GMM to estimate the
yearly depreciation rate, δ, and the standard deviation of expected next year’s capital, σk, from
1952-2011. Asymptotically valid standard errors are listed in parentheses below estimates and are
computed using the method of Newey and West (1987) with 10 lags.

Parameter Estimates
δ σk

0.0573 0.0217
(0.0037) (0.0037)

where Ē and V̄ denote the sample mean and sample variance.1

3.2 Estimating the capital evolution process

We estimate δ and σk from the moment conditions:

E
[
logKt+1 − log K̄t+1

]
= 0,

E
[(

logKt+1 − log K̄t+1

)2 − σ2
k

]
= 0,

using GMM where

K̄t+1 = Yt + (1− δ)Kt − Ct.

Although there does not exist a simple closed from expression for the estimates, the parameters are

exactly identified. Estimates are presented in Table 2.

3.3 Estimating the temperature equations

Appendix D shows that

Tt = (κs − κm)λ

t−1∑
j=h

(1− κm)t−j−1Fj + λFt + (1− κs)Tt + κsT

is the conditional mean of time t+1 temperature, using information at time t, where we set h = 1751.

We estimate λ, κs, T , and σs with GMM using the moments

E =

(Tt+1 − Tt)⊗ z1,t
(Tt+1 − Tt)2 − σ2

s

 = 0

1To compute the sample variance, we divide by the sample size.
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with the instruments

z1,t =
[
1 Tt Ft Ft−1

]
,

and a fixed diagonal weighting matrix, W, where for i = 1, 2 . . . 4, the (i, i) element of W is equal to

the inverse of the sample mean of z21,it. Here z1,it is the value of the ith instrument at time t. When

λ = 0, the value of κm does not matter. If κs = 0, then T is not identified.

Estimates are presented in Table 3. Although the model performs poorly on the GMM test of

overidentifying restrictions, there is some evidence that the model has weak explanatory power for

data since 1952. Our estimates of λ are typically around 0.0028 and consistent with previous studies.

For example, Matthews et al. (2009) report values of about 0.0017 based on numerical climate model

simulations. Also, Leduc, Matthews and de Eĺıa (2016) find values up to 0.0030 for higher latitude

regions.2 However, our estimates should be viewed with some caution since our instruments Tt and

Ft may not be stationary.

3.4 Estimating the output equations

Appendix E shows

logAt+1 − logAt =Mt+1 + Et+1 = µa + σaea,t+1

where Et+1 captures the change in log productivity due to temperature changes andMt+1 represents

other changes:

Mt+1 = log
Yt+1

Yt
− α log

Kt+1

Kt
− ν log

Ft+1

Ft
− (1− α− ν) log

Lt+1

Lt
,

Et+1 = ωd |Tt+1 − T |p − ωd |Tt − T |p .

For several different values of p and ν, we estimate ωd, µa, and σa using the moments

E

(Mt+1 + Et+1 − µa)⊗ z2,t
(Mt+1 + Et+1 − µa)

2 − σ2
a

 = 0,

with the instruments

z2,t =
[
1 log Yt

Yt−1
log Kt

Kt−1
log Ft

Ft−1
log Lt

Lt−1
log Kt

Yt

]′
,

2As described in Appendix C the units of λ are Celsius per billion metric tons of carbon. Many authors use
different units such as Celsius per trillion metric tons of carbon. A λ of 0.0028 corresponds to 2.8 Celsius per trillion
of metric carbon.
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Table 3: Estimates of the temperature equation. This table present first stage GMM esti-
mates of the temperature equation using the instruments and weighting matrix described in Section
3.3, with annual data. Asymptotically valid GMM standard errors are listed in parentheses below
estimates and are computed using the method of Newey and West (1987) with 10 lags. Param-
eters without standard errors are fixed. The J-stats measure moment condition errors and the
corresponding p-values indicate the likelihood of observing errors at least this large.

Time period Parameter Estimates Model Test
(for t+ 1) λ κs κm T σs J-stat P-value

1882-2011 0 -0.0157 — 13.5304 0.1226 10.9767 0.0041
(0.0258) (1.0984) (0.0079)

0.0023 0.0568 0 13.7941 0.1183 1.3165 0.2512
(0.0014) (0.1911) (0.3094) (0.0065)

0.0024 0.0560 0.001 13.7927 0.1184 1.2234 0.2687
(0.0014) (0.1894) (0.312) (0.0064)

0.0032 0.0619 0.01 13.7733 0.1180 0.6929 0.4052
(0.0015) (0.1734) (0.2479) (0.0056)

1952-2011 0 -0.0229 — 13.7683 0.1114 45.7019 0
(0.0181) (0.2934) (0.006)

0.0027 0.7640 0 13.7415 0.0943 0.0711 0.7898
(0.0001) (0.1215) (0.0318) (0.005)

0.0028 0.7716 0.001 13.7407 0.0943 0.0839 0.7721
(0.0001) (0.1202) (0.0318) (0.005)

0.0036 0.7489 0.01 13.7353 0.0944 0.1610 0.6882
(0.0002) (0.1123) (0.0332) (0.0051)
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and a fixed diagonal weighting matrix, W, where for i = 1, 2 . . . 6, the (i, i) element of W is equal to

the inverse of the sample mean of z22,it. Here z2,it is the value of the ith instrument at time t. The

(7, 7) element of weighting matrix W is one. Although one could argue that

(Tt − T )
p − (Tt−1 − T )

p

would be a good candidate for an instrument, we choose not to use it because it varies with values

of p and complicates comparison of the performance of different values of p. We fix the value of

T = 13.74 using the value of one of its estimates from the temperature equations. We also fix α at

0.4.

Table 4 presents estimates for p = 2 and p = 4. For comparison purposes we also present results

when p = 1. In this case, we interpret Et+1 as

ωd (Tt+1 − Tt)

to avoid possible discontinuities in derivatives.3

There is some evidence that the model with p = 2 and ν = 0.25 provides a reasonable represen-

tation of past data. However, we find conflicting evidence on the value of ωd. Although its estimates

are generally not significantly different from zero, the p-values of models tell us that the model with

p = 2 and ωd = 0.2997 is difficult to reject whereas the model with ωd = 0 is easily rejected. On the

basis of these results, depending upon which test is used, one could say there is some evidence that

ωd is likely to be between approximately −0.20 and 0.70.

It is important to realize that there are many possible ways our model of economic climate

change could be misspecified. For example, it is possible that increases in temperature adversely

affect growth rates through channels other than Dt (Moyer et al. 2014). To some extent, our agents

are robust to growth rate effects through the minimizing choice of Ga,t.

3.5 Calibrating preference parameters

We initially make two assumptions for the analysis in this section:

Assumption 3.1 The parameter p is a positive even integer.

Assumption 3.2 The derivative of the agent’s value function with respect to reserves is zero, at all

dates.

3In our data sample Tt is always greater than T so that Et+1 = ωd (Tt+1 − Tt) . However, our model predicts that
its possible that Ts+1 < T and Ts 6= Ts+1 for some s, in which case Es+1 6= ωd (Ts+1 − Ts) .
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Table 4: Estimates of the output equation This table present first stage GMM estimates
of the output equation using the instruments and weighting matrix described in Section 3.4, with
annual data from 1952-2011. Asymptotically valid GMM standard errors are listed in parentheses
below estimates and are computed using the method of Newey and West (1987) with 10 lags.
Parameters without standard errors are fixed. The J-stats measure moment condition errors and
the corresponding p-values indicate the likelihood of observing errors at least this large. A dash
indicates that the value of p does not matter since ωd = 0. Standard errors are not adjusted for the
pre-estimation of some of the variables.

Parameter Estimates Model Test
p ωd µa σa J-stat P-value

Panel A: ν = 0.10
— 0 0.0081 0.0139 13.9688 0.0158

(0.0025) (0.0014)

1 0.1704 0.0105 0.0252 2.7531 0.6000
(0.1527) (0.0026) (0.0153)

2 0.2508 0.0114 0.0343 1.5638 0.8153
(0.2031) (0.0035) (0.0235)

4 0.1351 0.0092 0.0233 4.8623 0.3017
(0.1886) (0.0038) (0.0183)

Panel B: ν = 0.20
— 0 0.0069 0.0132 18.0523 0.0029

(0.0024) (0.0013)

1 0.2063 0.0098 0.0286 1.7000 0.7907
(0.1701) (0.0026) (0.0180)

2 0.2787 0.0106 0.0373 0.7346 0.9470
(0.2205) (0.0038) (0.0261)

4 0.1027 0.0078 0.0195 5.6841 0.2240
(0.1430) (0.0034) (0.0127)

Panel C: ν = 0.25
— 0 0.0063 0.0130 19.8381 0.0013

(0.0024) (0.0013)

1 0.2237 0.0094 0.0304 1.5253 0.8222
(0.1794) (0.0027) (0.0193)

2 0.2997 0.0103 0.0397 0.6847 0.9532
(0.2350) (0.0040) (0.0281)

4 0.0824 0.0070 0.0174 6.7851 0.1477
(0.1166) (0.0031) (0.0095)
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Assumption 3.1 guarantees that |Tt − T |p is differentiable with respect to Tt. Assumption 3.2 guar-

antees that the economy is not resource constrained. Given the parameter values we use in most

of our examples in later sections, Assumption 3.2 is an implication of the model, but it does not

necessarily hold for all parameter values and all initial conditions. Assumption 3.2 is useful in this

section to simplify the calibration but we do NOT impose this assumption in other sections of this

paper.

We write the utility function at time t as

Ut ≡ U
(
Ct
Lt
, Qt

)
=

(
ϕ
[
Ct
Lt

]τ
+ (1− ϕ)Qτt

) 1−γ
τ

1− γ

and use the following notation for derivatives:

Uxt =
∂U
(
Ct
Lt
, Qt

)
∂Xt

where Xt = Ct or Qt.

Let

St = β
Uct
Uct−1

be a stochastic discount factor (Hansen and Renault 2010). In Appendix F, we derive the moment

conditions

Et−1StRkt = 1, Et−1StRdt = 1

where

Rkt = α
Yt
K̄t

+ (1− δ)
(
Kt

K̄t

)

is the gross return on capital and

Rdt =
YtFt−1
Yt−1Ft

[
1− κm +

(
ωd p λ

ν

)
(Tt − T )

p−1
(
QtUqt
YtUct

+ 1

)
Ft

]

is a fictitious return related to optimal energy usage.4 These moments conditions are for a non-

robust version of the model in which Gm,t, Ga,t, and Gd,t, are zero. The moment conditions are

4By fictitious return, we mean that this is not necessarily a return on asset that agents can invest in usual financial
markets. However, the return satisfies the same equation that investable assets satisfy, and our model is consistent
with there either being, or not being, an investable asset with this return.
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plausibly stationary versions of the usual consumption Euler equation and a corresponding equation

for optimal energy usage.

For various values of ϕ, Table 5 estimates τ and β using the moments

E

(StRkt − 1)⊗ z3,t−1
(StRdt − 1)⊗ z3,t−1

 = 0 (2)

with the instruments,

z3,t−1 =
[
1 Yt−1

Kt−1

Yt−1

Yt−2

Ft−1

Ft−2

Ct−1Lt−2

Ct−2Lt−1

]′
(3)

and a fixed diagonal weighting matrix, W, where for i = 1, 2 . . . 5, the (i, i) and (5 + i, 5 + i) elements

of W are equal to the inverse of the sample mean of z23,it−1. Here z3,it−1 is the value of the ith

instrument at time t. We fix p = 2, γ = 1, ωd = 0.2997, ν = 0.25, λ = 0.0028, κm = 0.001,

T = 13.74, α = 0.4, and δ = 0.0573 in all specifications.

We find some evidence for values of ϕ around 0.8 and values of τ around −1.3. However, as

is typical of many dynamic economic models, there is strong evidence to suggest that the model

is misspecified as the GMM test of overidentifying restrictions test fails for all specifications. The

estimated parameter values should be viewed as calibrated, or as rough approximations, and not

statistically justified estimates.

Although we only estimate preference parameters for a non-robust representative agent, since

optimal decisions do not change very much as a reasonable amount of robustness is introduced

into the economy, when γ = 1 and ω = 0.2997, the presented estimated values are also reasonable

approximations for the preference parameters of a robust representative agent. As we describe in

later sections robust decision rules can be very different for other parameter values (such as when

ωd = 0), so its not always the case that a non-robust model can be used to calibrate a robust model.5

For interpretation, we can decompose Rdt into three components. The first component includes

terms that represent the effect of temperature change on productivity:

Rat =
YtFt−1
Yt−1

(
ωd p λ

ν

)
(Tt − T )

p−1
.

This term would be zero if ωd was always zero or if Dt did not affect output. The second component

5See Figures 2 and 4; and the discussion in Section 5.
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Figure 1: The components of Rdt. This figure plots the three components of Rdt using our
optimal parameter estimates and actual data when γ = 1, τ = −1.3, ωd = 0.2997.
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represents the direct effects of temperature change on preferences:

Rqt =
YtFt−1
Yt−1

(
ωd p λ

ν

)
(Tt − T )

p−1 QtUqt
YtUct

=
Ft−1
Yt−1

(
ωd p λ

ν

)
(Tt − T )

p−1
(

1− ϕ
ϕ

)
Ct

(
QtLt
Ct

)τ
.

This term would be zero if ωd = 0 or if climate quality did not directly affect preferences. The third

component represents the contribution of future damages (beyond time t+ 1):

Rht =
YtFt−1
Yt−1Ft

(1− κm) .

This term would be zero if man made temperature increases only lasted one period, which happens

when κm = 1. However, κm is generally thought to be near zero by climate scientists, so this term

is likely to be large.

Figure 1 graphs the three components of Rdt using our estimates and actual data. We see that

until about 1970 the Rat and Rqt components are almost identical. Starting in the late 1970s, Rqt

grows at a fast rate and starts to dominate Rat. Rat is roughly constant between 1952 and 2000;

and starts to fall in the 21st century.

4 Parameter selection

In this section, we describe the parameter values and initial conditions used in simulations discussed

in subsequent sections.

4.1 Climate and preference parameters

We combine our estimates for 1952-2011 with standard calibrations to set parameter values that we

believe are useful for future policy evaluation.

For the parameter values directly related to temperature we set

λ = 0.0028, κs = 0.77, κm = 0.001, T = 13.74, σs = 0.0943

from the estimates for 1952-2011 of the temperature equation when κm is fixed at 0.001. Although

the estimates when λ is fixed at zero have a slightly higher p-value, there is scientific evidence

to suggest that man made damages should depreciate at a small rate over time. In addition, our

estimates for the time period 1882-2011 suggest that κm may be much higher than zero.
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Table 5: Calibration of preference parameters. This table provides estimates og the (non-)
robust first order conditions for optimization, with annual data from 1952-2011. Asymptotically
valid GMM standard errors are listed in parentheses below estimates and are computed using the
method of Newey and West (1987) with 10 lags. Parameters without standard errors are fixed. The
J-stats measure moment condition errors and the corresponding p-values indicate the likelihood of
observing errors at least this large, if the model is correct. Standard errors are not adjusted for the
pre-estimation of some of the variables. The value of γ is fixed at one in all rows.

Parameter Estimates Model Test
ϕ τ β J-stat P-value

0.1 0.3332 0.9434 67.4499 0
(0.2010) (0.0030)

0.2 -0.0463 0.9503 45.5878 0
(0.2133) (0.0035)

0.3 -0.2947 0.9546 32.2615 0.0001
(0.2208) (0.0040)

0.4 -0.4965 0.9579 24.0948 0.0022
(0.2265) (0.0043)

0.5 -0.6803 0.9607 19.1975 0.0138
(0.2315) (0.0047)

0.6 -0.8628 0.9634 16.5023 0.0357
(0.2363) (0.0050)

0.7 -1.0605 0.9661 15.1745 0.0558
(0.2413) (0.0054)

0.8 -1.3001 0.9690 14.6749 0.0658
(0.2471) (0.0059)

0.9 -1.6577 0.9727 14.8111 0.0629
(0.2552) (0.0065)
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For the parameter values directly related to output and damages, we set

p = 2, ωd = 0.2997, µa = 0.0103, α = 0.4, ν = 0.25, σa = 0.0397

from Table 4, Panel C, the third row. Since we can not reject the hypothesis that the parameter ωd

is zero, in some examples set ωd = 0. A social planner who denies that temperature changes effect

the economy would set ωd = 0.

We set the population growth parameters and capital evolution parameters as

n = 0.0172, σl = 0.002, δ = 0.0573, σk = 0.0217

from their estimates. We set

β = 0.969 ϕ = 0.8

from the estimate of preference parameters with the highest p-value (See the 8th row of Table 5). In

most of our examples we set τ = −1.3 (which is τ ’s estimated value in the same estimation) though

we do consider other values of τ. We also usually set γ = 1 but briefly consider other values.

We have very little information about the other parameters and we set them as:

σm = 0.0001, σd = 0.2350, µr = 0.

We select the values of σm and σd, to be similar to the standard errors of estimates of λ and ωd.

This is a reasonable setting if the parametric models for temperature and damages are correct and

we are mainly worried about parameter uncertainty. Though, these values perhaps underestimate

the values of σm and σd if we are worried that the parametric specification is wrong.

In all of our examples, ε = 1 and we consider several different values for θ.

4.2 Appropriate levels of robustness

How robust should the representative agent be? We introduce a parameter % and let

Gθ1,t+1 = σmGm,t

Gθ2,t+1 = σaG
θ
a,t + σdG

θ
d,t |Tt − T |

p − σdGθd,t−1 |Tt+1 − T |p
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where the superscript θ indicates that the value of θ is fixed at a particular value. We estimate %

with GMM using the stacked moment conditions from the temperature and output equations:

mθ
t+1 =



(
Tt+1 + %Gθ1,t+1 − Tt

)
⊗ zθ1,t(

Tt+1 + %Gθ1,t+1 − Tt
)2 − σ2

s(
Mt+1 + Et+1 + %Gθ2,t+1 − µa

)
⊗ zθ2,t(

Mt+1 + Et+1 + %Gθ2,t+1 − µa
)2 − σ2

a


for a given value of θ, where the other parameters are held fixed at the values described in Section

4.1, unless otherwise stated.6 The instruments, zθ1,t and zθ2,t, may depend on the fixed value of θ.7

Since the reference model is a reasonably good description of the world we expect estimates of % to

be near zero.

We are primarily interested in the standard error of estimates of %. If the standard error of

an estimate of % is large enough so that we can not reject its value being one, we say that the

robust perturbations generated by θ are reasonable. If we can reject % being one then the robust

perturbations are too large and the value of θ should be reduced. For a given θ, if we can not reject

values of ϕ much larger than one then (although the robust perturbations are reasonable for this θ),

the value of θ should be increased because larger robust perturbations also will be reasonable.

This approach to determining appropriate values of the parameters shares many features of the

detection probability approach advocated by Hansen and Sargent (2008, Chapter 9). Our approach

is computationally simpler because, for a given θ, it only requires solving the model numerically J

times, where J is the horizon.8 One drawback of our approach is that we rely on asymptotically

justified standard errors and do not fully take into the limited amount of data available.

The reasonableness of perturbations in part depends on agents preferences. Some robust agents

may be worried about extreme perturbations which are likely to occur with 10% probability, based

on estimates from previous data. Others may view 10% percent as too extreme and only worry

about perturbations that could occur with 30% probability. We adopt a middle ground and assume

agents should worry about perturbations that can occur with about 20% probability.

When the estimate of % is very near zero,9 if the standard error of % is 0.780 then we expect

perturbations as large as those generated by θ to occur with probability 10%. If the standard error

of % is 1.188 then we expect perturbations as large as those generated by θ to occur with probability

6The moment conditions when % = 1 and ε = 1 can be derived in a similar way to the moment conditions in
Section 3.4.

7For example, Gθa,t, G
θ
b,t−1, and Gθd,t are good candidates to supplement the instruments, z2,t In our results, we

set zθ1,t = z1,t and zθ2,t = z2,t; and do not use additional instruments.
8We solve the model numerically using the method described in Section 5. Its not computationally feasible for us

to reliably compute detection probabilities using ordinary workstations with a limited number of processors.
9By very near zero, we mean between −0.0001 and 0.0001.
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20%. If the standard error of % is 1.907 then we expect perturbations as large as those generated by

θ to occur with probability 30%. If the estimate of % is not near zero then these critical values need

to be adjusted.

The results in Table 6 show that estimates of % are very near zero, when the the damages

parameter ωd is set at its estimated value 0.2997. When τ is between −1.3 and −1.0 reasonable

values of θ are between 0.1 and 0.2. We can reject the perturbations generated by θ ≥ 2 as

being unreasonable, whereas the perturbations generated by θ ≤ 1, although reasonable are not

large enough, for a social planner who worries about perturbations that can occur with about 20%

probability.

Table 6 also shows that when the social planner uses a reference model different from the esti-

mated model, then larger values of % are possible. For example, when ωd = 0 and τ = −1.3, values

of % are much bigger than zero. In this case, when θ = 0.1 or 0.2 estimates of % are even greater than

one and thus regardless of the value of %’s standard error, the social planner should be worried about

the perturbations generated by 0.1 and 0.2, since his estimated % says that even larger distortions

are the most likely outcome. A social planner willing to worry about perturbations that can occur

with 20% probability will set θ to be between 0.3 and 0.4 when ωd = 0.0.10

4.3 Initial conditions

For our simulations in subsequent sections, we let time begin in the year 2011 and set the initial

conditions accordingly. We set the values of capital and reserves to be their actual values in 2011

(using the measurements described in Appendix C):

K2011 = 158.72, L2011 = 3.67, R2011 = 1635.72.

The initial value of S is chosen so that temperature in the model directly matches actual temperature

in 2011:

S2011 = T2011 −M2011 − T = −0.126

where

M2011 = λ

2010∑
j=1751

(1− κm)t−j−1Fj = 0.9860

10The probability that % is greater than equal to one when θ = 0.3 is about 39%. The probability that % is greater
than equal to one when θ = 0.4 is about 6%.
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Table 6: Robustness calibration This table computes estimates of % and its standard error for
various values of θ, τ, and ωd, using annual data from 1952 to 2011. The other parameter values are
set at the values listed in Section 4. We use a fixed weighting matrix which is a combination of the
fixed weighting matrices used in Tables 3 and 4. Asymptotically valid GMM standard errors are
listed in parentheses below estimates and are computed using the method of Newey and West (1987)
with 10 lags. The standard errors are not adjusted for the pre-estimation of the other parameters.

γ = 1 and ωd = 0.2997 γ = 1 and ωd = 0
θ / τ -1.3 -1.0 -0.1 0.1 0.5 -1.3 -1.0 -0.1 0.1 0.5

0.100 0.02 0.01 0.01 0.01 0.01 3.71 2.05 0.71 0.65 0.59
(1.71) (1.22) (0.60) (0.56) (0.51) (2.19) (1.28) (0.42) (0.39) (0.35)

0.200 0.01 0.01 0.00 0.00 0.00 1.51 0.90 0.36 0.33 0.30
(0.78) (0.56) (0.30) (0.28) (0.26) (0.95) (0.56) (0.21) (0.20) (018)

0.300 0.00 0.00 0.00 0.00 0.00 0.85 0.53 0.24 0.22 0.20
(0.44) (0.34) (0.20) (0.19) (0.18) (0.54) (0.33) (0.14) (0.13) (0.12)

0.400 0.00 0.00 0.00 0.00 0.00 0.50 0.34 0.18 0.17 0.16
(0.29) (0.23) (0.15) (0.15) (0.14) (0.32) (0.21) (0.11) (0.10) (0.09)

0.500 0.00 0.00 0.00 0.00 0.00 0.33 0.24 0.14 0.14 0.13
(0.19) (0.16) (0.12) (0.12) (0.11) (0.21) (0.15) (0.09) (0.08) (0.08)

and where T2011 = 14.6 is temperature in 2011. The initial value of A is chosen so that output

matches actual output in 2011:

logA2011 = log Y2011 + logD2011 − α logK2011 − ν logF2011 − (1− α− ν) logL2011 = 1.0357

where

logD2011 = ωd |T2011 − T |p = 0.2217

and where Y2011 = 47.35 and F2011 = 9.45 are the actual values of output and carbon usage in 2011.

5 Simulations

Figures 2 thru 6 plot energy usage, consumption per-worker, temperature, output and capital in

the reference model, starting in 2011. The social planner uses robust decision rules each period,

although the reference model is correct and the minimizing distortions do non effect future state

variables. The simulations are designed to roughly match the mean dynamics of the system. Every

period the social planner uses the optimal decision rules for the stochastic problem, but the shocks
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(ek,t+1, es,t+1, ea,t+1, and el,t+1) end up always being zero. Thus, we simulate the system:

Kt+1 = φt [Yt + (1− δ)Kt] , Rt+1 = Rt − Ft + µr,

Mt+1 = (1− κm)Mt + λFt, St+1 = (1− κs)St

At+1 = At exp (µa) , Lt+1 = (1 + n)Lt,

where

Tt = T +Mt + St, Dt = exp (ωd |Tt − T |p) , Qt =
1

Dt
,

Yt =
At
Dt
Kα
t F

ν
t L

1−α−ν
t , Ct = (1− φt) [Yt + (1− δ)Kt] ,

and where φt and Ft are the optimal decision rules in the robust stochastic economy.11 The initial

date t0 = 2011 and the horizon J = 160. Although the social planner, imagines the world as ending

in 2171 we only report the values of the state for the first 100 years, in long-horizon graphs, and the

first 50 years, in short-horizon graphs.

We solve the robust model using an extension of the small noise algorithm presented in Anderson,

Hansen and Sargent (2012). In the algorithm, we compute a Taylor Series approximation for the

optimal decision rules around a deterministic dynamic game in which ε = 0. By expanding around

a deterministic dynamic game rather than a deterministic optimal control problem, we generally

achieve more accurate solutions.

5.1 Simulations using optimal estimates

Figure 2 presents long-horizon simulations, for several values of the robustness parameter θ, for our

leading choice of parameter values listed in Section 4 with γ = 1, τ = −1.3, and ωd = 0.2997. We

see that the evolution of energy usage, consumption per-person, temperature, and output do not

very much as θ increases. Figure 3 presents short horizon simulations under alternative parameter

values. A higher and positive value of τ leads to higher fuel usage and higher consumption per-

worker. When γ = 0.5, the results are almost identical to the log case. When γ = 5, fuel usage only

slightly changes but consumption per-worker is noticeably smaller.

5.2 Simulations assuming temperature changes have no economic impact

Figure 4 presents simulations for a robust social planner who believes that temperature changes have

no effects on productivity or climate quality (ωd = 0). Although this social planner denies the effects

11In the simulation, K̄t equals Kt for all t.
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Figure 2: Long horizon simulations using the optimal estimates. This figure simulates
optimal energy usage (Ft), consumption per-worker (Ct/Lt), temperature (Tt), and output (Yt) for
the parameter values described in Section 4 when γ = 1, τ = −1.3, ωd = 0.2997 for four different
values of θ. The simulations are almost identical for the four values of θ.
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Reference model simulations when γ=1.0 and τ=0.5
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Reference model simulations when γ=0.5 and τ=-1.3
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Reference model simulations when γ=5.0 and τ=-1.3

Figure 3: Short horizon simulations using alternative parameter values. Each row simu-
lates capital (Kt), energy usage (Ft), and consumption per-worker (Ct/Lt) using different parame-
ters. Row 1 lets τ = 0.5, row 2 lets γ = 0.5, and row three lets γ = 5.0. The other parameters are
the same as in Figure 2 and the first row of Figure 5.
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of temperature change, he wants to be robust to the possibility that he is wrong and temperature

changes do affect productivity and air quality. The time-paths of optimal energy usage, consumption

per-worker, temperature and output vary significantly as θ increases. For very small θ, energy usage

can be constrained by the stock of reserves but for θ ≥ 0.1 energy usage is mitigated mainly by the

fear that the reference model is wrong.

We see that robust agents who deny temperature effects on the economy choose similar (but

not identical) policies to robust (or non-robust) agents who believe temperature changes affect

productivity and preferences. For example, when θ = 0.4, initial choices of energy usage and

consumption per-worker in 2011 are in the same ballpark.12

5.3 Separating the productivity and preference effects

In this section we discuss the different implications of the productivity and preference effects. The

first row of Figure 5 uses our optimal parameter estimates and corresponds to the plots in Figure 2.

The second row removes the productivity effect so that

Yt = AtK
α
t F

ν
t L

1−α−ν
t

every period. The third row removes air quality from preferences every period from preferences so

that:

u (c,Q) = c.

In the second row, we see that the preference effect on its own leads to a gloomy outcome. The

social planner knows that utility will eventually be limited by air quality and optimally decides on

a large value of consumption per-worker now, which drastically decreases over time. The social

planner chooses to not accumulate much capital and capital falls thru time. In later years (not

plotted) consumption per-worker continues to fall at a fast rate after 2060. In the third row we

see that the productivity effect on its own, leads to a much more gradual decrease in consumption

per-worker and a large increase in capital. The increase in capital partially offsets the decrease in

productivity caused by temperature change. Interestingly in the first row, where both effects are

present, consumption per-worker falls only slightly in the initial periods before eventually rising

after about year 2033. The first row shows that the combination of the productivity and preference

effects are much different than a simple linear combination of the separate effects. For example,

12Note that Figures 2 and 4 plot many quantities though time, assuming that the different reference models in each
case are correct. This makes it difficult to compare future choices. However, in unreported results the decision rules,
as a function of the current state, are in the same ballpark for climate believers and robust climate deniers, when
θ = 0.4.
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Figure 4: Long horizon simulations with ωd = 0. This figure simulates optimal energy usage
(Ft), consumption per-worker (Ct/Lt), temperature (Tt), and output (Yt) for the parameter values
described in Section 4 when γ = 1, τ = −1.3, ωd = 0.
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consumption per-worker, after an initial fall, returns to small but persistent growth in about 2033;

whereas with only the preference effect, or only the productivity effect, consumption per-worker

continues to fall over time.

Figure 6 considers the case of a planner who denies temperature changes affect productivity and

air quality; and sets ωd = 0. The planner, however, does wish to be robust to the possibility that he

is wrong and there are economic damages from climate change. The first row of Figure 6 corresponds

to the plots in Figure 4. The second row has only the preference effect. Like the second row in Figure

5 consumption per-worker and capital fall rapidly. The third row has only the productivity effect.

We see that for values of θ ≥ 0.01 consumption is rising over time. For θ = −0.00001, consumption

initially rises even faster and then starts to fall. Capital rises at a fast rate.

6 Conclusions

This paper has developed the first, to our knowledge, example of an empirically disciplined robustness

analysis in climate economics. It is also the first model in climate economics to use a specification

of climate dynamics built on foundations laid by recent work on the Cumulative Climate Response,

CCR (Matthews et al. 2009, Matthews, Solomon and Pierrehumbert 2012) which shows that the

increase in the temperature anomaly to approximately linearly proportional to cumulated emissions.

We estimate a baseline model of economic growth dynamics and climate dynamics and calibrate

robustness parameters to empirically discipline the size of the set of perturbations from the baseline

model.

The data on the economic impacts of climate change is sparse and subject to disagreement and

many interpretations. We suggest that although reasonable economists can doubt that temperature

changes affect productivity and preferences, robust economists will roughly agree on optimal strate-

gies. We show that although non-robust climate believers and climate deniers choose drastically

different policies, robust climate believers and climate deniers choose somewhat similar policies.

Our results suggest that if a consensus to use robust policies emerges, then there should be much

less disagreement between climate believers and deniers about policy.

Our results suggest that including both preference and productivity effects of climate change is

important and our simulations in Section 5.3 suggest that preferences for air-quality have a different

impact on optimal decisions than productivity damages. Our empirical calibration of preferences in

Section 3.5 shows that the preference affects are becoming more important over time.

While our model is very stylized and very simple it is rich enough to expose the economic

importance of changes in the IES, ES, output elasticity w.r.t. capital, output elasticity w.r.t. to labor
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Figure 5: Short horizon simulations using the optimal estimates. Each row simulates capital
(Kt), energy usage (Ft), and consumption per-worker (Ct/Lt) under different assumptions using the
same parameters values as Figure 2. Row 1 lets environmental damages affect productivity and
preferences. Row 2 lets environmental damages only affect preferences. Row 3 lets environmental
damages only affect productivity. 31
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Figure 6: Short horizon simulations when ωd = 0.. Each row simulates capital (Kt), energy
usage (Ft), and consumption per-worker (Ct/Lt) under different assumptions using the same pa-
rameters values as Figure 4. Row 1 lets environmental damages affect productivity and preferences.
Row 2 lets environmental damages only affect preferences. Row 3 lets environmental damages only
affect productivity. 32



and energy, as well as the empirically disciplined size of the perturbation set around the estimated

baseline version of our model. Even though our model is very simple it required development of

computational methods that yield workably useful results using only laptop computers. Better

computational results will need more computer power.

Future research is needed to introduce recursive preferences, e.g., as in Hansen and Sargent (2008,

Chapter 14) and spatial transport of heat across space, e.g. as in Brock et al. (2013). Extension of

our work to the case of recursive preferences is important because this allows effects of changing IES

to be separated from effects of changing risk aversion. More research is also needed to produce better

measures of climate quality than we used here. It would also be valuable to introduce endogenous

technical change, adaptation to climate change as well as mitigation, better representation of climate

dynamics, and backstop technologies. However, our model, as is, was rich enough to expose the

importance of the economic forces inherent in the robust formulation of economic-climate models.

References

Anderson, Evan W., Lars Peter Hansen, and Thomas J. Sargent. 2012. “Small Noise
Methods for Risk-Sensitive/Robust Economies.” Journal of Economic Dynamics and Control,
36(4): 468 – 500.

APS. 2013. “American Physical Society Climate Change Statement Review, Workshop Framing
Document, Climate Change Statement Review Subcommittee.”

Arrow, Kenneth J., Partha Dasgupta, Lawrence H. Goulder, Kevin J. Mumford, and
Kirsten Oleson. 2012. “Sustainability and the Measurement of Wealth.” Environment and De-
velopment Economics, 17(3): 317 – 353.

Brock, William A., and Steven N. Durlauf. 2001. “Growth Empirics and Reality.” World Bank
Economic Review, 15(2): 229 – 272.

Brock, William A., and Steven N. Durlauf. 2015. “On Sturdy Policy Evaluation.” The Journal
of Legal Studies, 44(S2): S447–S473.

Brock, William A, Gustav Engström, Dieter Grass, and Anastasios Xepapadeas. 2013.
“Energy balance climate models and general equilibrium optimal mitigation policies.” Journal of
Economic Dynamics and Control, 37(12): 2371–2396.

Brock, William A., Steven N. Durlauf, and Kenneth D. West. 2003. “Policy Evaluation in
Uncertain Economic Environments.” Brookings Papers on Economic Activity, 1: 235 – 301.

Brock, William A., Steven N. Durlauf, and Kenneth D. West. 2007. “Model Uncertainty
and Policy Evaluation: Some Theory and Empirics.” Journal of Econometrics, 136(2): 629 – 664.

Cai, Yongyang, Kenneth Judd, and Thomas Lontzek. 2012a. “DSICE: A dynamic stochastic
integrated model of climate and economy.” RDCEP Working Paper 12-02.

Cai, Yongyang, Kenneth L Judd, and Thomas S Lontzek. 2012b. “The social cost of abrupt
climate change.” Hoover Institution, Stanford, and the University of Zurich.

33



Cai, Yongyang, Kenneth L Judd, and Thomas S Lontzek. 2013a. “The Cost of Delaying
Abrupt Climate Change.” Hoover Institution, Stanford, and the University of Zurich.

Cai, Yongyang, Kenneth L. Judd, and Thomas S. Lontzek. 2013b. “The Social Cost of
Stochastic and Irreversible Climate Change.” National Bureau of Economic Research Working
Paper 18704.

Cogley, Timothy, and Thomas J. Sargent. 2005. “The Conquest of US Inflation: Learning and
Robustness to Model Uncertainty.” Review of Economic Dynamics, 8(2): 528 – 563.

Cogley, Timothy, Bianca De Paoli, Christian Matthes, Kalin Nikolov, and Tony Yates.
2011. “A Bayesian Approach to Optimal Monetary Policy with Parameter and Model Uncer-
tainty.” Journal of Economic Dynamics and Control, 35(12): 2186 – 2212.

Crost, Benjamin, and Christian P. Traeger. 2011. “Risk and aversion in the integrated as-
sessment of climate change.” Department of Agricultural and Resource Economics, University of
California at Berkeley CUDARE Working Papers 11104R.

Dawkins, Christina, T. N. Srinivason, and John Whalley. 2001. “Calibration.” In Handbook
of Econometrics. , ed. J. J. Heckman and E. Leamer. Elsevier Science B. V.

Feenstra, Robert C, Robert Inklaar, and Marcel P Timmer. 2015. “The Next Generation
of the Penn World Table.” American Economic Review, 105(10): 3150–82.

Golosov, Mikhail, John Hassler, Per Krusell, and Aleh Tsyvinski. 2014. “Optimal taxes
on fossil fuel in general equilibrium.” Econometrica, 82: 41–88.

Hansen, Lars Peter. 1982. “Large Sample Properties of Generalized Method of Moments Estima-
tors.” Econometrica, 50(4): 1029–1054.

Hansen, Lars Peter, and Eric Renault. 2010. “Pricing Kernels.” In Encyclopedia of Quantitative
Finance. , ed. Rama Cont. Wiley.

Hansen, Lars Peter, and Thomas J Sargent. 2001. “Robust control and model uncertainty.”
The American Economic Review, 91(2): 60–66.

Hansen, Lars Peter, and Thomas J. Sargent. 2008. Robustness. Princeton, NJ.:Princeton
University Press.

Hennlock, Magnus. 2008. “A robust feedback Nash equilibrium in a climate change policy game.”
In Mathematical programming and game theory for decision making. Vol. 1 of Statistical Science
and Interdisciplinary Research, , ed. S.K. Neogy, R.B. Bapat, A.K. Das and T. Parthasarathy,
305–326. World Scientific.

Hennlock, Magnus. 2009. “Robust Control in Global Warming Management: An Analytical Dy-
namic Integrated Assessment.” Resources For the Future Discussion Paper 09-19.

Hoel, Michael, and Thomas Sterner. 2007. “Discounting and relative prices.” Climatic Change,
84(3): 265–280.

Jensen, Svenn, and Christian Traeger. 2013. “Mitigation under long-term growth uncertainty:
Growing emissions but outgrowing its consequences–sure?” University of California Center for
Energy and Environmental Economics Working Paper WP-065.

Keller, Klaus, Benjamin M. Bolker, and David F. Bradford. 2004. “Uncertain climate
thresholds and optimal economic growth.” Journal of Environmental Economics and Management,
48: 723–741.

34



Kelly, David L., and Charles D. Kolstad. 1999. “Bayesian learning, growth, and pollution.”
Journal of Economic Dynamics and Control, 23: 491–518.

Kolstad, Charles D. 1996. “Learning and Stock Effects in Environmental Regulation: The Case
of Greenhouse Gas Emissions.” Journal of Environmental Economics and Management, 31: 1–18.

Leduc, Martin, H Damon Matthews, and Ramón de Eĺıa. 2016. “Regional estimates of the
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A Other approaches to robustness

We note that complementary techniques exist for dealing with issues closely related to the type of ro-

bustness considered here, e.g. using Bayesian methods, for addressing model uncertainty have been

proposed in a series of papers also in the context of macroeconomics and growth. Brock and Durlauf

(2001) discussed Bayesian Model Uncertainty, Leamer’s extreme bounds analysis, and versions of

ambiguity aversion that modify Bayesian Model Averaging. They also conduct an illustrative ap-

plication to the impact of ethnolinguistic heterogeneity to African economic growth in comparison

to other countries around the world. Brock, Durlauf and West (2003, 2007) discussed application of

closely related approaches to economic growth policy and especially for macroeconomic policy, e.g.

the setting of “Taylor” type rules for monetary policy.

Brock, Durlauf and West (2007) argue that in some cases where the scientific team does not

wish to take a stand on the preferences of the policy maker, it should simply prepare a graphical

summary, called an “action dispersion, welfare dispersion plot,” that illustrates, for each model in

the model uncertainty set, the optimal action chosen, the optimal welfare produced by that optimal

action, and an empirically disciplined credibility number (e.g. a relative likelihood computed from

data). In this way the policy maker can see how optimal actions, optimal welfares, and credibility

numbers are dispersed in the model uncertainty set. In this way the policy maker’s attention is

drawn towards the cluster of models that have the most credibility given the data and is not unduly

distracted by models that have little support in the data. This kind of plot can illustrate quickly

the type of uncertainty management problem the policy maker faces for the case of one parameter

rules in monetary policy; two and three parameter rules have also been used. Another example

of the Bayesian Model Uncertainty approach was an application by the Bank of England; Cogley

et al. (2011), for the setting of Central Bank policy. Cogley and Sargent (2005) do an interesting

Bayesian Model Uncertainty study where the posterior probabilities over three rival models having

some a priori credibility in economic science are updated over time by a policymaker in an optimal

learning framework. Brock and Durlauf (2015) compare and contrast these various approaches to

dealing with “sturdy” policy choices that perform well over a range of uncertainties, e.g. model

uncertainties, that policy makers must face, as well as discuss critiques of received approaches to

this basic problem in policy analysis.

B Preferences and climate ethics

IA models based on the RCK-DICE framework have analyzed optimal dynamic GHG abatement

as a problem of balancing economic consumption and well-being between present and future gener-
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ations, taking account of the costs both of climate change damages and of abatement policies. In

particular, the standard model specification omits the possibility that human society may explicitly

value climate or environmental quality as distinct from economic consumption. This has led Roe

and others to point out that in fact, future generations may not regard a high level of consumption

as adequate “compensation” for a degraded climate. In turn, this possibility has been one argument

used to support approaches such as a “precautionary” framing of abatement policy that would dic-

tate present-day efforts to reduce GHG emissions substantially more aggressive that those justified

on cost-benefit grounds in many IA analyses. This is one example of the view that shortcomings of

economic methodology justify a turn to instead relying upon ethical and moral criteria to formulate

climate policy that would avoid an unacceptably high probability of catastrophic climate change.

Many thoughtful commentators suggest that it is simply wrong for the State to take a life and,

likewise, it is simply wrong for today’s generations to bequeath a planet with a degraded climate to

future generations.

If, on the basis of such concerns society were to take a “moral imperative” position on climate

change as suggested by Roe (2013), what imperative should be used? How would this kind of

approach actually be implemented in policy? In the IA modeling context, the most common approach

to this question has been to lower the pure rate of time preference in models based on RCK-DICE,

thereby giving greater weight to future economic outcomes, including damages from climate change,

and therefore justifying more stringent GHG emissions abatement. However, as has been pointed

out by Nordhaus and Dasgupta, without other changes to the assumptions of such models, this can

result in internal inconsistencies that yield model outputs that actually weaken the case for more

aggressive climate policy, are contrary to empirical evidence, or both.

However, such ethical concerns are indeed within the purview of economic analysis, and, correctly

applied, economic methods can yield valuable insights about them and show in a clear and rigorous

way they might inform policy.

For example, Hoel and Sterner (2007), Sterner and Persson (2008) study the “environmental

quality” problem, analyzing the impacts of relative prices between consumption goods and envi-

ronmental goods for the discounting process. A potentially attractive criterion is sustainability in

genuine wealth across generations as argued by Arrow et al. (2012). They create a measurement of

well-being which includes health capital, human capital, consumption of material goods per capita,

natural capital, environmental quality, etc., which can also include components of climate quality.

They argue that proper policy with respect to future generations requires that their measure of

“comprehensive wealth” rises over future generations.

The analysis presented in this paper addresses some of the ethical concerns about climate change
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by taking into account climate quality in the utility function of the representative decision-maker in

our model, where the elasticity of substitution between climate quality and consumption per capita

can be less than one. In this case the utility is eventually bounded above independently of how high

consumption per capita rises due to economic growth. This captures the moral intuition that there

are fundamental limits to the substitutability of economic consumption for climate quality.

C Data

The data used in the estimations presented in Section 3 is yearly and is measured as follows:

1. Temperature: We measure temperature in degrees Celsius using data on “Combined Land-

Surface Air and Sea-Surface Water Temperature Anomalies” downloaded from http://data.

giss.nasa.gov/gistemp/ on January 8, 2016. We use the average temperature over the calen-

dar year. A direct link to the data is here http://data.giss.nasa.gov/gistemp/tabledata_

v3/GLB.Ts+dSST.txt.

2. Energy: We measure energy in billions of metric tons of carbon, using data on total world

carbon usage was downloaded from http://cdiac.ornl.gov/trends/emis/meth_reg.html

on January 8, 2016. A direct link to the data is here http://cdiac.ornl.gov/ftp/ndp030/

global.1751_2011.ems.

3. Reserves: We set R to 2000 billions of metric tons of carbon and interpret this as a measure

of the stock of reserves at the beginning of 1751. Then using data on carbon usage we deduct

the cumulative carbon usage to determine reserves. Reserves in year t are

Rt = R+ µr(t− 1751)−
t−1∑

i=1751

Fi

when t ≥ 1751.

4. Output, capital, consumption, and population: The data used on output, capital, consumption,

and population is measured with estimates from version 8.1 of the Penn World Table (Feenstra,

Inklaar and Timmer 2015), downloaded on January 8, 2016. We measure output using data on

the real side of output in trillions of 2005 US dollars (series “RGDPO”, rescaled). We measure

capital using data on the capital stock in trillions of 2005 US dollars (series “CK”, converted

to constant PPP and rescaled)13. We measure (total) consumption with the sum of private

13Series “CK” is converted to constant purchasing power parity (PPP) by multiplying by series “RGDPO” and
dividing by series “CGDPO.”
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consumption (series “CSH C” times ”RGDPO”, rescaled) and 70% of government consump-

tion (0.7 times series “CSH G” times “RGDPO”, rescaled). Since government consumption

partially includes government investment, we only include 70% of government consumption

in total consumption. We measure population in billions (series “POP”, rescaled). We sum

up output, capital, consumption, and population for each country for which data in all years

(1950 to 2011) is available. If output, capital, consumption, or population data is missing in

one or more years for a country, then that country is excluded from the data set for all years.

Of the 167 countries included in the Penn World table, the following 54 countries have the nec-

essary data: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Colombia, Costa

Rica, Cyprus, Democratic Republic of the Congo, Denmark, Ecuador, Egypt, El Salvador,

Ethiopia, Finland, France, Germany, Guatemala, Honduras, Iceland, India, Ireland, Israel,

Italy, Japan, Kenya, Luxembourg, Mauritius, Mexico, Morocco, Netherlands, New Zealand,

Nigeria, Norway, Pakistan, Panama, Peru, Philippines, Portugal, South Africa, Spain, Sri

Lanka, Sweden, Switzerland, Thailand, Trinidad and Tobago, Turkey, Uganda, United King-

dom, United States, Uruguay, and Venezuela.

D The conditional mean of temperature

Substituting St = Tt −Mt − T , St+1 = Tt+1 −Mt+1 − T , and Equation 1d into Equation 1e and

rearranging yields

Tt+1 = Tt + σses,t+1

where we define:

Tt = Mt+1 + (1− κs) (Tt −Mt) + κsT (4a)

= (κs − κm)Mt + λFt + (1− κs)Tt + κsT . (4b)

We assume Mh = 0 for some date h far in the past, and solve Equation 1d backward. In this paper,

we take h = 1751. For t > h the solution is

Mt = λ

t−1∑
j=h

(1− κm)t−j−1Fj .
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We substitute the result into Equation 4b to yield the conditional mean of time t+ 1 temperature:

Tt = (κs − κm)λ

t−1∑
j=h

(1− κm)t−j−1Fj + λFt + (1− κs)Tt + κsT .

E The change in log productivity

We begin by solving Equation 1i for At and replacing Dt with the expression in Equation 1g:

At =
Yt exp (ωd |Tt − T |p)

Kα
t F

ν
t L

1−α−ν
t

when Gd,t−1 = 0 and ε = 0. Using an analogous expression for At+1 we write

logAt+1 − logAt =Mt+1 + Et+1

where we define

Mt+1 = log
Yt+1

Yt
− α log

Kt+1

Kt
− ν log

Ft+1

Ft
− (1− α− ν) log

Lt+1

Lt
,

Et+1 = ωd |Tt+1 − T |p − ωd |Tt − T |p .

Et+1 captures the change in log productivity due to temperature changes andMt+1 represents other

changes. From Equation 1f, we know that

Mt+1 + Et+1 = µa + σaea,t+1.

F Moment conditions from optimization

In this appendix, we write the value function at time t as

Vt ≡

V (Kt, Rt,Mt, St, At, Gd,t−1, Lt, t) t < t0 + J − 1

W (Kt, Rt,Mt, St, At, Gd,t−1, Lt) t = t0 + J

and use the following notation for derivatives:

Vxt =
∂V (Kt, Rt,Mt, St, At, Gd,t−1, Lt, t)

∂Xt
where Xt = Kt, Rt,Mt or At when t < t0 + J − 1.

We derive moment conditions for a non-robust version of the model in which the objective at
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time t can be written as:

Vt = max
φt,Ft

[
Ut + βEtVt+1

]
where Et denotes expectations with respect to time t information. For t = t0, t0 + 1, . . . t0 + J − 1,

the time t+ 1 values of the state are:

Kt+1 = φt [Yt + (1− δ)Kt] exp (σkek,t+1) ,

Rt+1 = Rt − Ft + µr,

Mt+1 = (1− κm)Mt + λFt,

St+1 = (1− κs)St + σses,t+1,

At+1 = At exp (µa + σaea,t+1) ,

Lt+1 = (1 + n)Lt exp (σlel,t+1) ,

where

Dt = exp (ωd |Tt − T |p) , Qt =
1

Dt
,

Ct = (1− φt) [Yt + (1− δ)Kt] ,

Yt =
At
Dt
Kα
t F

ν
t L

1−α−ν
t ,

Tt = T +Mt + St,

Ct, Ft, Rt+1,Kt+1 ≥ 0, 1 ≥ φt ≥ 0.

In this version of the problem we have assumed ε = 1; and Gm,t, Ga,t, and Gd,t are zero.

F.1 Euler equation

The first order condition for φt−1 and the envelope condition for kt can be written as:

Uct−1 = βEt−1ζtVkt (5)

Vkt =

[
α
Yt
Kt

+ (1− δ)
]
Uct (6)

where

ζt =
Kt

K̄t
= exp (σkekt) .
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Combining Equations 5 and 6 yields a version of the usual consumption Euler equation in a produc-

tion economy:

Uct−1 = βEt−1

(
ζt

[
α
Yt
Kt

+ (1− δ)
]
Uct

)
(7)

= βEt−1

[
α
Yt
K̄t

+ (1− δ)
(
Kt

K̄t

)]
Uct. (8)

By defining a stochastic discount factor

St = β
Uct
Uct−1

(9)

and the gross return on capital

Rkt = α
Yt
K̄t

+ (1− δ)
(
Kt

K̄t

)

we can write the Euler equation as:

Et−1StRkt = 1.

F.2 The first order condition for energy

The first order condition for energy, Ft, is:

νYtUct
Ft

= βEt [Vrt+1 − λVmt+1] .

Since assumption 3.2 guarantees that Vrt+1 = 0, we write the first order condition as

zt = −βEtVmt+1 (10)

where we define

zt =
νYtUct
λFt

. (11)

Below we will also use a lagged version of Equation 10 which say that zt−1 = −βEt−1Vmt.

The envelope conditions for Mt is

Vmt = Uqt
∂Qt
∂Tt
− YtUct

Dt

∂Dt

∂Tt
+ (1− κm)βEtVmt+1 (12)
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where

∂Dt

∂Tt
= ωdp (Tt − T )

p−1
Dt

∂Qt
∂Tt

= − 1

D2
t

∂Dt

∂Tt

= ωqp (Tt − T )
p−1

Qt

with

ωq = −ωd.

Using Equation 10 and the derivatives above, we rewrite the envelope condition in Equation 12 as

Vmt = −(1− κm)zt + Umt (13)

where we define

Umt = p (Tt − T )
p−1

(ωqQtUqt − ωdYtUct)

= −ωdp (Tt − T )
p−1

(QtUqt + YtUct) .

Using the definition of zt−1, we write Equation 13 as:

−zt−1 = −(1− κm)βEt−1zt + βEt−1Umt (14)

where we have taken expected values at time t−1 and multiplied all terms by β. Dividing both sides

by zt−1 gives us

(1− κm)βEt−1

(
zt
zt−1

)
− βEt−1

(
Umt
zt−1

)
= 1 (15)

Since
zt
zt−1

=
YtUctFt−1
Yt−1Uct−1Ft

(16)

and
Umt
zt−1

= −

[
ωd p λ (Tt − T )

p−1
(QtUqt + YtUct)Ft−1

νYt−1Uct−1

]
(17)

we can write this moment as:

βEt−1

[
(1− κm)YtUctFt−1

Yt−1Uct−1Ft
+
ωd p λ (Tt − T )

p−1
(QtUqt + YtUct)Ft−1

νYt−1Uct−1

]
= 1 (18)
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By defining a fictitious gross return:

Rdt =
(1− κm)YtFt−1

Yt−1Ft
+
ωd p λ (Tt − T )

p−1
(
Qt

Uqt
Uct

+ Yt

)
Ft−1

νYt−1

=
YtFt−1
Yt−1Ft

[
1− κm +

ωd p λ (Tt − T )
p−1

(Γt + 1)Ft
ν

]

where

Γt =
QtUqt
YtUct

=
Qt(1− ϕ)Qτ−1t

Ytϕ
Cτ−1
t

Lτt

=

(
1− ϕ
ϕ

)(
Ct
Yt

)(
QtLt
Ct

)τ
,

we can write the Euler equation for energy as:

Et−1StRdt = 1

where we have used the stochastic discount factor stated in Equation 9.

For interpretation we note that we can write:

Uct = ϕu1−γ−τt

Cτ−1t

Lτt

Uqt = (1− ϕ)u1−γ−τt Qτ−1t

Umt = p (Tt − T )
p−1

u1−γ−τt

[
(1− ϕ)ωqQ

τ
t − ϕωdYt

Cτ−1t

Lτt

]

where

ut =

[
ϕ

(
Ct
Lt

)τ
+ (1− ϕ)Qτt

] 1
τ

.
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