
UNDERSTANDING THE SPATIAL DISTRIBUTION

OF WELFARE IMPACTS OF GLOBAL WARMING

ON AGRICULTURE AND ITS DRIVERS

URIS L. C. BALDOS, THOMAS W. HERTEL, AND FRANCES C. MOORE

This paper explores the interplay between the biophysical and economic geographies of climate

change impacts on agriculture. It does so by bridging the extensive literature on climate impacts

on yields and physical productivity in global crop production, with the literature on the role of ad-

aptation through international trade in determining the consequences of climate change impacts.

Unlike previous work in this area, instead of using a specific crop model or a set of models, we em-

ploy a statistical meta-analysis that encompasses all studies available to the IPCC-AR5 report.

This permits us to isolate specific elements of the spatially heterogeneous biophysical geography

of climate impacts, including the role of initial temperature, differential patterns of warming, and

varying crop responses to warming across the globe. We combine these climate impact estimates

with the Global Trade Analysis Project model of global trade in order to estimate the national

welfare changes that are decomposed into three components: the direct (biophysical impact) con-

tribution to welfare, the terms of trade effect, and the allocative efficiency effect. We find that

when we remove the spatial variation in climate impacts, the terms of trade impacts are cut in half.

Given the inherent heterogeneity of climate impacts in agriculture, this points to the important

role of trade in distributing the associated welfare impacts. When we allow the biophysical impacts

to vary across the empirically estimated uncertainty range taken from the meta-analysis, we find

that the welfare consequences are highly asymmetric, with much larger losses at the low end of the

yield distribution. This interaction between the magnitude and heterogeneity of biophysical cli-

mate shocks and their welfare effects highlight the need for detailed representation of both in pro-

jecting climate change impacts.
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There is now a large literature documenting
the effects of climate change on crop pro-
ductivity. Scientific approaches to estimating

the response of crops to changes in tempera-
ture, rainfall, and CO2 concentration range
from process-based crop models that simu-
late the biophysical processes occurring in
plants, to reduced-form empirical
approaches, to agronomic in-field or green-
house experiments, but give quantitatively
and qualitatively similar estimates of the ef-
fect of climate change (Liu et al. 2016;
Lobell and Asseng 2017; Zhao et al. 2017).
While historically a large fraction of studies
examined the impacts on a particular crop in
a single area, recent efforts have attempted
to consistently estimate impacts to multiple
crops around the globe (Lobell, Schlenker,
and Costa-Roberts 2011; Rosenzweig et al.
2014; Moore et al. 2017). These studies tend
to show a consistent picture of the
“biophysical” geography of climate impacts
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on agricultural productivity. For example,
the effects are worse for cold-adapted wheat
relative to heat-tolerant rice and effects are
worse in hotter areas than cooler ones
(Porter et al. 2014). The Agricultural
Modeling and Intercomparison Project
(AgMIP) has organized this community and
they have made considerable progress over
the past decade in characterizing the uncer-
tainty associated with the biophysical
impacts of climate change.

Although the spatial distribution of yield
impacts from climate change have been
well-studied, the implications of these
impacts for economic outcomes such as pri-
ces, consumption, and welfare has received
less attention, despite the fact that these out-
comes are of more direct interest for both
adaptation and mitigation policies; (for
some notable exceptions, see Reilly,
Hohmann, and Kane 1994; Rosenzweig and
Parry 1994; Randhir and Hertel 2000).
Examining only the effects of local produc-
tivity changes could be misleading since cli-
mate change is expected to have global
impacts and since many agricultural prod-
ucts are heavily traded internationally, mak-
ing trade a critical pathway for adaptation to
global warming. Recently an increasing
number of papers have used the biophysical
yield results described above as an input to
general- or partial-equilibrium models in or-
der to model the economic consequences of
productivity shocks. Nelson and Shively
(2014) edited a special issue of the journal
Agricultural Economics in which ten global
economic models (loosely termed the
AgMIP economic modeling group) are
linked to the AgMIP archives of biophysical
impacts in order to draw out the implications
for the future agricultural economy of cli-
mate change in the context of five different
“Shared Socioeconomic Pathways”. These
models include both partial and general
equilibrium approaches, and the focus is on
comparing results for regional and global
prices, production, consumption, and land
use change. Relatively little attention is de-
voted to trade—indeed the models in this
group have very different treatments of in-
ternational trade. They also do not explore
the potential role for trade to facilitate adap-
tation to climate change.

In a subsequent paper, also drawing on the
AgMIP archive of biophysical climate
impacts on crop yields, Baldos and Hertel
(2015) focus explicitly on the role of trade in

mitigating the impacts of climate change on
undernutrition. Their partial equilibrium
model predicts a dramatic increase in under-
nutrition in South Asia under a worst-case
climate impacts scenario from the AgMIP
archives, but they also find that fully integrat-
ing global crop commodity markets could cut
this increase in half.

A somewhat separate strand of literature
has empirically estimated trade models that
emphasize the importance of geography in
determining trade costs and therefore the
welfare-gains from trade. The most notable
paper in this tradition is that of Costinot,
Donaldson, and Smith (2016). These
authors emphasize the importance of the
spatial dispersion of yield changes or, in the
vocabulary of the present paper, the bio-
physical geography of climate impacts on
agriculture. Costinot, Donaldson, and
Smith (2016) note that this opens possibili-
ties for additional gains from trade by
which “a country may stop producing a crop
whose yields have fallen and import it in ex-
change for another crop whose yields have
remained constant at home.” These
authors’ paper focuses on climate-induced
changes in comparative advantage, both
within and across countries. The most sa-
lient finding from their paper is that the
spatial reallocation of production within
countries is more important than interna-
tional trade in mitigating potential losses
from climate change. This point has, how-
ever, been challenged in subsequent work
that lends a critical eye to model parame-
terization (Gouel and Laborde 2018).

A significant limitation of Costinot,
Donaldson, and Smith is their reliance on a
single model, that is, the United Nations
Food and Agriculture Organization Global
Agroecological Zones (GAEZ) model, to
elicit yield impacts of climate change across
the world. The GAEZ model reports poten-
tial yields (i.e., yields without any nutrient or
moisture constraints), rather than actual
yields (Rosenzweig et al. 2014). For this rea-
son it is difficult to validate model output
(since potential yields are not observed) and
it is likely to result in biased estimates of the
productivity impacts of climate change be-
cause of the interaction between nutrient and
moisture availability and the effect of CO2

fertilization, precipitation change, and tem-
perature change.

Our paper seeks to bridge these different
bodies of literature by focusing specifically
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on the interplay between the biophysical
and economic geographies of climate
impacts on agriculture, international trade,
and economic welfare. Here we define
“biophysical geography” as the spatial het-
erogeneity in the yield impacts of climate
change owing to differences in initial tem-
perature, changes in temperature under
global warming, and differences in crops
grown across the globe, and “economic geo-
graphy” as the bilateral patterns of interna-
tional trade which give rise to differential
terms of trade effects stemming from a cli-
mate change scenario. In doing so we seek
to combine some of the strongest elements
of both literatures: productivity shocks are
based on a meta-analysis of the current
yield impacts literature that was used to
support findings in the recent
Intergovernmental Panel on Climate
Change (IPCC) assessment report (IPCC
2014), combined with an empirically-based
trade model with clear welfare-theoretic
foundations, which allows us to decompose
the welfare consequences of climate change
on agriculture into constituent drivers.
Unlike Costinot, Donaldson, and Smith, we
undertake explicit analysis of the interplay
between uncertainties in our economic
model and uncertainties in the crop impact
estimates. We do not, however, model the
climate impacts at a sub-national level.

As noted by Costinot, Donaldson, and
Smith (2016), if all crops, in all regions, were
affected in the same way by global warming,
this would be a relatively simple problem—
and there would be a very limited role for in-
ternational trade in adapting to climate
impacts. However, the world is not that sim-
ple. Climate impacts on crops vary, for ex-
ample, due to differences in the pattern of
global warming across the world, as well as
differences in initial temperatures. The
impacts of elevated temperatures and higher
CO2 concentrations vary by crop, and crop
composition varies widely across the globe.
It is for these reasons that the interregional
incidence of climate change becomes an in-
teresting problem, worthy of deeper
investigation.

Our first task in this paper will be to under-
stand the biophysical geography of climate-
induced agricultural impacts. We will do so
using a newly available meta-analysis of more
than 1,000 climate impact estimates submit-
ted as part of the Intergovernmental Panel on
Climate Change Fifth Annual Review

(Moore, Baldos, and Hertel 2017; Moore
et al. 2017). With this meta-function in hand,
we can isolate the impact of different drivers
of differences in the biophysical geography of
impacts, including spatial variation in (a)
temperature increases across the globe, (b)
initial temperature (warm vs. cold regions),
and (c) crop composition. This contributes to
an improved understanding of the biophysical
geography of climate impacts—a necessary
precursor to analyzing the economic geogra-
phy of the welfare consequences of climate
change.

In order to assess the interregional inci-
dence of climate change, we employ a quan-
titative, global general equilibrium approach
to ensure complete measurement of the wel-
fare effects. In order to avoid the “black-
box” critique often leveled at applied gen-
eral equilibrium models, we systematically
decompose the sources of all regional wel-
fare changes, isolating the direct contribu-
tion of climate impacts on productivity from
the indirect effects arising from the eco-
nomic adjustments, most notably changes in
the national terms of trade (ToT). In a num-
ber of cases the indirect effect reverses the
sign of the welfare change from the direct
(productivity) effect. This prompts us to
delve more deeply into the terms of trade
impacts from climate change and their inter-
play with the underlying biophysical geogra-
phy of climate impacts.

Theory

Since our focus in this paper is on regional
welfare changes, we begin with the analytical
expression (1) for the change in welfare
(measured as Equivalent Variation; EV) due
to climate change shocks to agricultural pro-
ductivity, his, which represent the percentage
change in Hicks-neutral productivity of sec-
tor i of region s (see Huff and Hertel (2001)
for a complete derivation of this expression).
It is quite intuitive that if farmers plant the
same crop using the same mix of inputs at
mid-century, but harvest 10% less output,
then the direct economic loss is simply equal
to 10% of the value of output (PO

is QO
is ), where

PO
is is producer price and QO

is is output of
commodity i in region s. This is summed
across all sectors in region s to obtain the di-
rect welfare effect of climate change. This, in
turn, must be translated through the EV
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scaling factor ðwsÞ, which is itself a function
of the elasticity of expenditure with respect
to utility.

ð1Þ EVs ¼ ðwsÞ

XN

i¼1

ðhisP
O
is QO

is Þ

þ
XN

i¼1

XR

r¼1

ðsMirsP
cif
irs dQMS

irs Þ

þ
XN

i¼1

ðsOisP
O
is dQO

is Þ

þ
XN

i¼1

XR

r¼1

ðQMS
isr dP

fob
isr Þ

�
XN

i¼1

XR

r¼1

ðQMS
irs dP

cif
irs Þ

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

The next two terms in this welfare decom-
position capture how these perturbations in-
teract with existing policy distortions when
implemented globally and when prices and
quantities throughout the general equilibrium
systems are permitted to respond. Whenever
a quantity changes in the presence of an exist-
ing distortion, a change in allocative efficiency
results.1 Consider, for example, what hap-
pens when the production of staple com-
modity i in region s is disproportionately
adversely affected by climate change
(his<0 ). Assuming that consumers seek to
maintain consumption of this staple good in
the face of diminished output, the country
will need to import more of the product
(dQMS

isr > 0), where QMS
isr is the bilateral flow

of commodity i from r to s. If domestic pro-
ducers of this commodity have been pro-
tected from foreign competitors, then there
is likely to be a tariff on its importation
(sMirs > 0). In this case, there will be an im-
provement in allocative efficiency which will
contribute to increased regional welfare, as
consumers access more of the product from
lower cost suppliers overseas.

If domestic producers of the staple com-
modity receive an output subsidy, then
sOis < 0, where sOis is the ad valorem equiva-
lent representation of this domestic “tax”. In

this scenario, facing an adverse climate shock,
we expect output in region s to drop, ceteris
paribus, so that (dQO

is < 0), where QO
is is the

volume of output of commodity i in region s.
The product of two negative changes results
in an improvement in regional welfare, as less
of the subsidized output is produced. Of
course, the opposite outcome is also possi-
ble—and indeed quite likely in the
Organisation for Economic Co-operation and
Development (OECD) countries Costinot,
Donaldson, and Smith since many of these
nations lie in high latitudes and therefore
might expect favorable productivity shocks
from modest levels of global warming. In this
case, with subsidized output rising, this par-
ticular allocative efficiency contribution to re-
gional welfare is negative.

The final two terms in equation (1) refer to
the terms of trade (ToT) effects for region s
due to the climate change shocks. The ToT
effects sum to zero globally and so are pure
transfers at the international level. The ToT
change offers an avenue for a region heavily
affected by climate change, which is also a ma-
jor commodity exporter, to share the burden
of climate change with other regions. If the
production of region s is disproportionately
adversely affected by higher temperatures, her
export-weighted fob prices are likely to rise,
relative to her import-weighted cif prices,
PN

i¼1

PR
r¼1

ðQMS
isr dP

fob
isr Þ �

PN
i¼1

PR
r¼1ðQMS

irs dP
cif
irs Þ

> 0, where P
fob
irs and P

cif
irs are the bilateral ex-

port and import prices associated with the
trade flow Qms

irs . In this case, her ToT will im-
prove, while those of her trading partners
(importers) are likely to deteriorate. In sum-
mary, each region’s welfare gains can be
decomposed into three components: direct
effects of climate change, allocative efficiency
effects, and the terms of trade component.
This decomposition will prove very useful
when it comes to understanding the distribu-
tional consequences of climate change impacts
on agriculture.

At this point, the astute reader will note
that expression (1) is only locally valid. In
order to operationalize this decomposition
tool in a quantitative general equilibrium
model such as that discussed below, this wel-
fare decomposition must be numerically in-
tegrated, allowing the prices and quantities
to change over the path taken by the model
solution. We use version 9 of the
GEMPACK software suite (Harrison and

1 In equation (1) we show only tariffs and output subsidies,
which are the predominant types of distortions in agricultural
markets. However, in the computational general equilibrium
model, we must consider all distortions in all sectors of the econ-
omy, so this expression has many additional terms.
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Pearson 1996), which is ideally suited to this
problem, as it solves the non-linear CGE
model using a linearized version of the be-
havioral equations, coupled with updating
equations that link the variable describing
the change in imports, dQms

irs , for example,
with the levels variables, Qms

irs , thereby inte-
grating the terms in this decomposition over
large changes in the underlying variables.
Standard extrapolation techniques can be
used to obtain arbitrarily accurate solutions
to this well-posed non-linear problem
(Harrison and Pearson 1996).2

Estimating Climate Impacts on Agriculture

In order to operationalize this theory, our first
task is to estimate the shocks to agricultural
productivity, by commodity and region: his.
We do so by drawing on the recent meta-
analysis of Moore, Baldos, and Hertel (2017)
and Moore et al. (2017). The yield-
temperature response functions used in this
paper are derived from a database of studies
estimating the climate change impact on yield
compiled for the IPCC’s 5th Assessment
Report (Porter et al. 2014), also described in a
meta-analysis by Challinor et al. (2014). For
the four crops addressed here, the database
contains 1,010 observations (344, 238, 336, and
92, for maize, rice, wheat, and soybeans, re-
spectively) from 56 different studies published
between 1997 and 2012. The database underly-
ing our yield shock estimates is therefore
based on a comprehensive review of the cur-
rent agronomic literature, including both bio-
physical growth models, as well as statistical
studies of climate impacts. These are the stud-
ies that supported conclusions in the food se-
curity chapter of the most recent IPCC report.

We merge this database with information
on baseline growing season temperature for
each data-point using planting and harvest
dates from Sacks et al. (2010) and gridded
monthly temperatures for 1979–2013 from
the Climate Research Unit (CRU 2016).
These were averaged to the country level us-
ing year 2000 crop production weights from
Monfreda, Ramankutty, and Foley (2008).

This allows us to estimate the response of all
four crops using the following:

ð2Þ

DYijk ¼ b1jDTijk�Cropj

þ b2jDTijk
2�Cropj

þ b3jDTijk�Cropj��T jk

þ b4jDTijk
2�Cropj��T jk

þ b5f1 DCO2ijk

� �
�C3

þ b6f2 DCO2ijk

� �
�C4 þ b7DPijk

þ b8DTijk�Adaptijk

þ b9Adaptijk þ eijk

where DYijk is the change in yield from point-
estimate i for crop j in country k (in %).
Further, DTijk; DCO2ijk and DPijk are the
changes in temperature (in degrees C); CO2

concentration (in parts per million (ppm)) and
rainfall (in percentage) for point-estimate ijk,
�T jk is the baseline growing-season tempera-
ture for crop j in country k, C3 and C4 are
dummy variables indicating whether the crop
is C3 or C4, and Adaptijk is a dummy variable
indicating whether the point-estimate includes
any on-farm adaptation (primarily changes in
crop variety and planting date). Equation (2)
is estimated using an ordinary least squares re-
gression.3 Uncertainty in the parameters is es-
timated non-parametrically through 1,500
block bootstraps, with blocks defined at the
study level, allowing for possible correlation
between point-estimates from the same study.

Equation (2) allows for a non-linear, crop-
specific warming response that is allowed to dif-
fer between hot and cold locations. It includes
a diminishing marginal effect of CO2 fertiliza-
tion, which is allowed to differ between C3 and
C4 crops.4 Finally, it allows the effect of

2 For purposes of this paper, we require that 95% of the varia-
bles and levels variables are accurate to six digits. Another useful
check is to compare EVs computed from equation (7) with that
computed directly from the utility function. These match to ma-
chine accuracy, indicating that this decomposition is well-
executed.

3 Although rainfall is included as a control in the meta-
analysis, the effect of average growing-season precipitation is
found to be small, relative to the effect of temperature and CO2

fertilization, and not statistically significant (Moore, Baldos, and
Hertel 2017). In addition, climate model projections of changes
in average precipitation are highly uncertain (Collins et al. 2013).
Therefore impacts of climate change on crop yields via precipita-
tion are not considered further in the analysis.

4 Specifically, the function takes the form f DCO2ij

� �
¼ DCO2ij

DCO2ijþA where A is a free parameter set at 100ppm for C3

crops and at 50ppm for C4 crops based on a comparison of the
R2 across models using multiple possible values. Note that CO2

fertilization is not considered in empirical studies and so these
parameters are estimated exclusively using process-based
studies.
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warming to vary depending on whether the
study reports including adaptation, but we find
the adaptation effect to be small.

In addition to equation (2), which is our
preferred specification, we investigate the
effects of several alternate specifications.
Specifically, we: (a) investigate whether
newer studies (publication date of 2005 or
later) give a different temperature response
compared to the full sample; (b) investigate
the effect of individual agronomic adapta-
tions, specifically changing cultivar and plant-
ing date; and (c) allow the effect of
temperature to differ depending on whether
the study was a process-based or empirical
study. These robustness checks are docu-
mented in Moore et al. (2017) and do not sig-
nificantly alter the estimated crop response to
temperature. We also investigate block boot-
strapping at the model rather than the study
level and do not find that this substantially
increases our standard errors. The latter will
be used to characterize uncertainty in climate
impacts in this paper.

Using the response function estimated in
equation (2), we predict yield shocks on a

global 0.5� grid for 2�C of global average
warming. Local temperature change at 2�C
warming is calculated based on the pattern
scaling of the CMIP5 multi-model ensemble
for RCP8.5 (Taylor, Stouffer, and Meehl
2012). Pattern scaling is the ratio of local
warming to global average temperature
change. Spatial heterogeneity in warming is
driven by snow and ice melt feedbacks at
higher latitudes and the different specific heat
capacity of land vs. ocean, features that tend
to be robust across climate models (See online
supplementary appendix figure A1 for a map
of these scaling factors). All yield shocks in
this paper also include the estimated benefits
of CO2 fertilization and the benefits of on-
farm agronomic adaptations. Figure 1 shows
these gridded yield shocks at 2 degrees of
warming. Consistent with the large body of lit-
erature on temperature productivity effects on
agriculture, we find negative impacts over
much of the world that are only partially offset
by the benefits of CO2 fertilization. There are
some positive effects, particularly for rice and
soybeans at higher latitudes. Negative impacts
are larger in continental interiors (where local

Figure 1. Global gridded yield shocks for maize, rice, soybeans and wheat at 2�C global aver-
age warming, relative to 1995-2005 average baseline

Note: Plot shows the combined effect of temperature change and CO2 fertilization in temperate and tropical regions and are based on results of a meta-analy-

sis of the effects of climate change on yield described in the text and in Moore, Baldos, and Hertel (2017) and Moore et al. (2017).
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Box 1. Experimental design for isolating individual contributors to spatially heterogeneous
climate impacts. Experiments are ordered from least (E4) to most restrictive (E1). The con-
tribution of each individual component is obtained by differencing experiments. For exam-
ple, E4–E3 reveals the contribution of variation in initial temperature to the spatially-
varying climate impacts.

E4: Full Biophysical Geography

his ¼ b̂1iDTs þ b̂2iDTs
2 þ b̂3iDTs��T is þ b̂4iDTs

2��T is

where his is the productivity change for crop i in region s, b̂i are the parameters of the
yield-temperature response function, estimated using the meta-analysis, �T is is the baseline
growing-season temperature of crop i in region s, and DTs is the change in temperature in
region s at a global average warming of 2�C.

E3: Remove impact of initial temperature:

� Initial temperature set at mean value (neutralize starting temperature)

his ¼ b̂1iDTs þ b̂2iDTs
2 þ b̂3iDTs��T i þ b̂4iDTs

2��T i

where �T i ¼
P

s
QOis

�T isP
s
QOis

is the production-weighted average growing season temperature for
crop s.

E2: Remove pattern-scaling of temperature

� Initial temperature set at mean value (neutralize starting temperature).
� No pattern-scaling of temperature (neutralize temperature variation)

hi ¼ b̂1i
�
DT þ b̂2i

�
DT

2 þ b̂3i
�
DT��T i þ b̂4i

�
DT

2��T i

where
�
DT ¼

P
is

QOisDTsP
is

QOis

is the production-weighted warming at 2�C global average warm-
ing.

E1: Biophysical Geography absent: Uniform climate impacts on crops

� Initial temperature set at mean value (neutralize starting temperature).
� No pattern-scaling of temperature (neutralize temperature variation).
� All crop responses to climate are the same (apply production-weighted global average)

h ¼
P

isQOishiP
isQOis

:

These four experiments provide a sequential decomposition of the components of spatial
heterogeneity in biophysical yield impacts (figure 2). Because the temperature response
functions are nonlinear, the decomposition results do depend on the order of the decompo-
sition (e.g., the effect of pattern scaling, E3–E2, is different depending on whether baseline
temperatures are first standardized, as is the case in this paper, or are heterogeneous).

Baldos, Hertel, and Moore Understanding the Spatial Distribution 1461

D
ow

nloaded from
 https://academ

ic.oup.com
/ajae/article-abstract/101/5/1455/5545935 by U

niversity of C
hicago user on 15 M

ay 2020



warming is larger) and in hot places (where
sensitivity to warming is higher).

For a particular crop, the biophysical pat-
tern of climate change for crop yield at 2�C
warming varies depending on (a) initial
growing season temperature and (b) the mag-
nitude of local warming based on the pattern-
scaling between local and global temperature
change. And, since each crop responds differ-
ently to warming, the crop composition in
each region will affect the aggregated direct
impacts of climate change. In our analysis, we
conduct a series of four experiments to iso-
late the contribution of each of these drivers
of the geographic pattern of yield shocks (see
box 1). The full effects are captured in our
baseline experiment (E4). Next, we standard-
ize the temperature shock by replacing the
temperature change in each location with the
area-weighted average temperature change
for each crop. This experiment (E3) removes
the pattern-scaling. By deducting the direct
effects of climate change on economic wel-
fare under this restricted scenario with that
obtained under the unrestricted experiment
(E4-E3), we can obtain the direct welfare
impacts of pattern-scaling. Secondly we re-
move the geographic pattern associated with

varying sensitivity to warming by standardiz-
ing initial growing-season temperatures at the
area-weighted global average value for each
crop (E2). Deducting the resulting welfare
change from the previous (no pattern scaling)
welfare, we obtain the effect of initial tem-
perature on direct welfare impacts (E3-E2).
In a final experiment, in addition to removing
pattern scaling and setting initial tempera-
tures equal, we equate individual crop
responses (same coefficients for all crops, j, in
equation 2) in order to remove the final ele-
ment of biophysical geography (E1).
Deducting welfare by region from the prior
result (E2-E1) gives us the impact of crop
composition on the direct welfare effects of
climate change by country.

The Quantitative Trade Model

One of the most widely used quantitative
general equilibrium models is the Global
Trade Analysis Project model (Hertel 1997).
Use of this model has the advantage that it is
open-source, is used by thousands of individ-
uals around the world, and has been succes-
sively refined over the course of the last two

Figure 2. Sequential decomposition of national welfare changes due to climate impacts on
maize, wheat, rice, and soybeans at 2�C warming

Note: Panel a) shows total direct welfare changes given climate-driven yield shocks for four crops. E4 experiment, box 1; Panel b) shows the welfare effects of

initial growing season temperature. E4 experiment–E3 experiment, box 1: Panel c) shows the welfare effects of pattern scaling. E3- experiment–E2 experi-

ment, box 1: Panel d) shows the welfare effects of crop composition. E2 experiment–E1 experiment: National welfare changes are normalized by total sec-

toral output value of the selected crops.
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decades.5 The version used here assumes per-
fect competition and constant returns to
scale, which are generally deemed to be rea-
sonable assumptions for sector-level model-
ing of agriculture in the presence of free
entry and exit (Diewert 1981). Products are
assumed to be nationally differentiated but
homogeneous within each country. The prod-
uct differentiation is by origin using the
method of Armington (1969), which, once
again, is generally deemed appropriate for
agricultural products—particularly the field
crops that are the focal point of this paper.

The GTAP model runs on any desired ag-
gregation of the GTAP database, now in its
9th release (Aguiar, Narayanan, and
McDougall 2016), which contains the most
comprehensive set of fully integrated, glob-
ally exhaustive information on agricultural
production, consumption, trade, tariffs, and
domestic agricultural policies.6 Version 9.1 of
the database, which is used here, disaggre-
gates the 2011 global economy into 140
regions—of which 120 are individual coun-
tries for which primary data have been as-
sembled, reconciled, and integrated into the
overall database. Tariff data come from the
International Trade Centre in Geneva, which
is responsible for collecting tariff data for the
United Nations, while the domestic agricul-
tural support measures are obtained from the
OECD and the European Commission
(Aguiar, Narayanan, and McDougall 2016).
Reconciled bilateral merchandise trade data
are obtained using the methodology outlined
in Gehlhar (1996).

As we will see in the results section, param-
eterization of the model is critical to our
results—particularly the Armington elastici-
ties of substitution between imports from dif-
ferent sources (commonly referred to as the
“trade elasticities”). These elasticities, along
with the bilateral import shares, govern the
“geography” of international trade and the
potential for adjusting that geography in re-
sponse to climate shocks. As noted by
Hillberry and Hummels (2013) in their con-
tribution to the Handbook of CGE
Modeling: “It is no exaggeration to say that
the trade elasticity is the most important pa-
rameter in modern trade theory . . .. . . It is

critical to evaluating welfare gains.” These
authors go on to admonish other authors for
simply “taking elasticities from the liter-
ature” without careful consideration. Indeed,
Hillberry and Hummels argue that these elas-
ticities should be identified using the same
type of variation in both the estimation and
the simulation of trade impacts. We adhere
to their admonition and have chosen to draw
on the work of Hertel et al. (2007), who esti-
mate equation (3) using a cross-section of
five-digit, SITC customs data compiled by
Hummels (1999) for six importers in the
Americas and New Zealand, giving rise to
187,000 observations on both fob and cif
values:

ð3Þ ln Virs ¼ a0 þ ais þ air

þ b0;iln ð1þ freightirs

þ tarif firsÞ þ b1;iln Distrs

þ b2;iLangrs þ b3;iAdjrs þ eirs:

where Virs is bilateral trade for commodity i
from r to s, in value terms, ais and air are
vectors of importer-commodity and
exporter-commodity intercepts, freightirs

and tarif firs are the ad valorem rates for in-
ternational shipping/insurance and tariffs of
commodity i moving from r to s, Dist, the
measure distance on that route, similarity of
language is denoted Lang, and adjacency of
the trading countries is given by the indicator
variable Adj. The parameter of interest in this
study is b0;i ¼ 1� ri, which is identified from
bilateral variation in trade costs. This is well-
suited to the current study since the identifica-
tion strategy is based on long run price varia-
tion induced by differences in transport costs
and tariffs. This is appropriate for analysis of
the consequences of climate change over the
long run.

Equation (3) is estimated using pooled, or-
dinary least squares in which the OLS esti-
mates of b0;i are constrained to be equal for
all five-digit categories within a given GTAP
merchandise sector (of which there are 40).
Estimates for the crops sectors of interest in
this study (see supplementary appendix table
A1) are all significant at the 95% confidence
level and vary within the crops category from
2.6 for cereal grains not elsewhere classified (a
very heterogeneous grouping) to 10.1 for
paddy rice. Importantly for this paper, we ob-
tain not only a point estimate, but also the
pooled OLS standard error associated with
each estimate. This will facilitate our

5 Refinements and extensions of the standard model are avail-
able here: (https://www.gtap.agecon.purdue.edu/resources/tech_
papers.asp).

6 Documentation and downloads of the data is available here:
(https://www.gtap.agecon.purdue.edu/databases/v9/default.asp),
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subsequent analysis of the sensitivity of
model results to parametric uncertainties.

Results

In this section, we build up the results in
stages to better understand the biophysical
and economic determinants of the distribu-
tional consequences of agricultural climate
impacts.

Biophysical geography of climate impacts.
We begin with the direct effect of climate
change on regional welfare from equation

(1): EVdirect;s ¼ ðwsÞf
PN

i¼1ðhisP
O
is QO

is Þg. As
previously noted (box 1), this direct effect
can be further decomposed using equation
(2), into three contributing factors based on
the underlying biophysical determinants of
climate impacts. These include the following:
differences in initial temperature, differential
rates of warming, and differences in crop
composition. Figure 2 reports these welfare
changes from the direct productivity effect in
the form of global maps. For each region, the
direct effect is normalized by the initial value
of output for the four crops in question, that

is, f
P4
i¼1

ðPO
is QO

is Þg to correct for the fact that

the relative importance of these crops varies
greatly across the world. So the change in
welfare is reported here as a percentage of
the value of output under climate impact
evaluation.

Panel A in figure 2 reports the total di-
rect effect on welfare of a two degree
Celsius global mean temperature rise. The
effects are mixed, with countries in the
higher latitudes (and high altitudes, e.g.,
along the Andes) sometimes gaining more/
losing less, and countries in the tropics and
mid-latitudes hurt more. We can speculate
about what is driving, for example, the large
losses in Brazil, or the gains in China, but it
is more useful to employ our meta-analysis
function to decompose these losses using
the experimental design laid out in box 1.
Panel B in figure 2 reports the contribution
of initial temperature to these direct welfare
impacts. Here, we see that part of the rea-
son for Brazil’s losses is the high starting
temperature in the grid cells where the four
focus crops are grown. On the other hand,
part of the reason for China’s gains is the
lower initial temperature in its cropping
regions. Figure 2, panel C reports the

contribution of pattern-scaling to direct wel-
fare impacts stemming from climate change.
The northern latitudes are, incrementally,
adversely affected by the polar amplification
of global warming. After controlling for
varying growing-season temperatures,
Canada and Russia, for example, are dispro-
portionately hurt by the uneven rate of
global warming, whereas Brazil benefits
from a more modest temperature rise due
to pattern scaling.

The final panel (D) in figure 2 shows the
contribution of crop composition to the direct
welfare effects. Recall from figure 1 that the
impact of 2 degrees Celsius global warming
on soybeans is much more severe than for
rice. This means that, compared to the global
average crop impact, soybeans in Brazil are
hit much harder than rice in China. Given the
predominance of these crops in those respec-
tive countries, crop composition favors China
(blue coloring), while disadvantaging Brazil
(red), as well as the other major soybean pro-
ducers in Latin America.

With a sharp reduction in soybean output,
relative to the no-climate change baseline, we
expect that soybean prices will rise, thereby
benefiting these exporting regions. How
much of the pain of climate change can be
shared with soybean importers via the indi-
rect effects? To answer this question, we
must turn to the trade model and the eco-
nomic geography of climate impacts.

Economic geography. We break the discus-
sion of economic geography into two parts.
We first analyze the terms of trade effect,

EVs ¼ ðwsÞ f
PN

i¼1

PR
r¼1ðQMS

isr dP
fob
isr Þ �

PN
i¼1PR

r¼1ð QMS
irs dP

cif
irs Þg, which tells us how much

of the (e.g.) loss from climate change can be
shifted onto those countries buying the af-
fected goods, in the form of higher prices.
Conceptually, the answer to this question
comes in the form of a 140x140 matrix describ-
ing the impact of a climate affected region (a
row in the matrix) on every other region in the
model (a column; note that, since the ToT ef-
fect will be spread across all sectors, it is im-
portant to evaluate this expression with
respect to the full set of merchandise and serv-
ices sectors in the model). However, comput-
ing the elements of this matrix poses a
challenge. One approach would be to shock
each of the individual 140 countries one-at-a-
time and record the impacts on each of the
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140 countries’ terms of trade for each of these
national perturbations. However, this suffers
from an important flaw—the climate shocks
interact with one another and so the column
totals will not reflect the ToT effect of the
combined climate change experiment.
Furthermore, the elements in the ToT matrix
will no longer sum to zero, bringing the entire
welfare calculation into question. Fortunately,
Harrison, Horridge, and Pearson (2000) dis-
covered a solution which has been imple-
mented into the GEMPACK software used in
this paper (Harrison and Pearson 1996;
Harrison, Horridge, and Pearson 2000). Their
subtotal function utilizes numerical integration
techniques to partition the impacts of each in-
dividual shock on each variable in the model.
So we are able to obtain a 140x140 matrix of
ToT effects exchanged amongst regions in the
wake of a single, global climate change
experiment.7

Figures 3(a) and (b) map the elements of
the Brazil and U.S. rows across the world.
Consider figure 3a, which maps the elements
of the Brazilian impact row of the ToT matrix.
The adverse climate shocks in Brazil restrict
Brazilian soybean output and raise world soy-
bean prices, thereby benefitting Brazil (as well
as her soybean producing neighbors). The big-
gest losses come in China and North Africa—
both big importers of Brazilian crops. Note
that the United States, as a soybean

competitor with Brazil, also gains from the
Brazilian climate shocks. Figure 3b shows a
similar map, only this time reporting the sub-
totals pertaining to the U.S. climate shocks.
As U.S. competitors, Canada, Brazil, and
Argentina gain, while those importing U.S. ag-
ricultural products (e.g., Mexico and China)
lose. Similar maps can be constructed based
on columns from the ToT matrix, in which
case we can observe (e.g.) the way in which a
given country is affected by climate change in
all the countries of the world (see online sup-
plementary appendix figure A4 for an exam-
ple). Figure 4b shows the aggregate terms of
trade effects for each region.

The third, and final, element of the global
geography of climate impacts is the
allocative efficiency component of equation (1),

EVs ¼ ðwsÞf
PN

i¼1

PR
r¼1ðsMirsP

cif
irs dQMS

irs Þþ
PN

i¼1

ðsOis PO
is dQO

is Þg. This is mapped, for the world,
in figure 4c, and captures the interplay be-
tween existing distortions and changing trade
and production flows in the economy. In fact,
given the presence of taxes and subsidies on
intermediate inputs and consumption in the
GTAP database, there are many more terms
in the allocative efficiency effect captured in
figure 4c (beyond those shown in equation 1).
However, the predominant “action” derives
from interactions between changes in bilateral
trade and tariffs and between changes in out-
put of agricultural products and domestic sup-
port policies. A particularly interesting case is
that of China, where soybean production is
heavily subsidized. As climate change reduces
soybean output in the United States, Brazil,
and Argentina, world prices rise, and China is

Figure 3. Regional terms of trade consequences due to climate change yield impacts in Brazil
only, (Panel a) and in the United States (Panel b) only, for four key crops at 2�C warming

7 Online supplementary appendix figure A3 provides a slice of
this matrix wherein 2 x 140 matrix is presented, with the cells
shaded to reflect gains (blue) and losses (red), evaluated as a per-
centage change in 140 countries’ overall ToT as a consequence of
climate shocks in the USA and in Brazil, respectively.
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encouraged to produce more soybeans.
However, as their heavy subsidies suggest, this
is not a commodity in which China has a com-
parative advantage. Therefore, this expansion
of soybeans, and the accompanying reduction
in imports, result in a loss of efficiency—hence
the red shading for China in figure 4c.

Interactions between biophysical and eco-
nomic geographies. How do these biophysical
and economic features of the global geogra-
phy of climate change interact? We
investigate this question by simulating the
global general equilibrium model once again,
but this time without the biophysical differen-
ces noted previously (recall E1 in box 1).
Figure 5 plots the terms of trade effects aris-
ing from this simulation (E1: no biophysical
geography ¼ horizontal axis) against those
arising from the full geography simulation
(E4: full spatial heterogeneity ¼ vertical axis)
for the 140 regions in our model. From the
slope of the underlying trend line, it is clear
that the terms of trade impact is more pro-
nounced (more than double, on average)
when the full biophysical geography is pre-
sent. In other words, absent spatial variation
in climate impacts on these staple crops,
there is far less of a role for economic geogra-
phy as reflected in the pattern of bilateral
trade amongst these 140 different trading
regions. Thus, the biophysical and economic

impacts of climate change reinforce one an-
other. This highlights the importance of com-
bining sophisticated analyses of spatial
variation in climate impacts with more so-
phisticated empirically estimated models of
bilateral trade flows. However, in the past,
the more sophisticated treatments of climate
impacts have been combined with relatively
simplistic models of trade (e.g., the integrated
assessment literature) and the sophisticated
trade models have been combined with rela-
tively simplistic treatments of climate impacts
(e.g., Costinot, Donaldson, and Smith 2016).

Interactions between the Biophysical and
Economic Uncertainties. Thus far we have
been treating our estimates of climate
impacts on crop yields, as well as trade elas-
ticities, as certain, but both are highly uncer-
tain. In this section of the paper, we explore
the consequences of this uncertainty for the
interregional incidence of climate change.
For this, we run a series of eight additional
experiments (the ninth, or central experi-
ment, is already reported above). These are
the elements of a 3 x 3 experimental design
matrix in which the columns refer to climate
impact uncertainties and the rows refer to
economic response uncertainties. In both
cases, we choose estimates from the 2.5, 50,
and 97.5 percentiles of the distribution of es-
timated yield impacts and trade elasticities,
respectively. This permits us to explore the

Figure 4. Overall impact of climate change on national welfare given yield shocks on maize,
wheat, rice, and soybeans at 2�C warming
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interplay between the biophysical and eco-
nomic uncertainties underlying this problem.

Figure 6 reports these welfare impacts
(expressed as a percentage of initial expen-
diture on all goods and services—and there-
fore a small number since we are only
considering impacts on 4 crops) for all 140
regions—arrayed in the following manner.

The red, black, and green bars show the
welfare change for each region, evaluated
at the low, median and high biophysical
yield estimates based on the meta-analysis
in equation (2), using the median estimates
of trade elasticities. That is, we run the
model three times, each time changing the
size of the climate impacts on the four
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Figure 5. Terms of trade effects (percentage change) in the absence (x-axis) and presence
(y-axis) of biophysical geographies of climate impacts on 140 world regions

Figure 6. Regional welfare consequences of climate change impacts on four major crops (per-
centage of expenditures on all goods and services)

Note: Upper, middle and lower thick horizontal bars represent welfare impacts given the crop yield shocks at 97.5, 50, and 2.5 percentile, respectively. Green,

black, and red thin vertical bars represent error bars in the welfare impacts due to uncertainty in trade elasticities using 97.5 and 2.5 percentile values for each

corresponding crop yield shock percentiles. This uncertainty is mostly small for many of the regions and so these error bars are only visible for a subset of

points.
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staple crops, once with the impacts drawn
from the left tail of the distribution (low
yields), once from the median, and once
from the right-hand tail (high yields).
Through each of these point estimates runs
an “error bar” reporting the welfare change
extending from the estimates with low to
high values of estimated trade elasticities—
hence the need for nine total simulations—
though these error bars are very small and
therefore not visible for many of these
regions and runs. Several points are imme-
diately evident. Firstly, the median
impacts—that is, the impacts evaluated at
median yield and trade elasticities—are
mostly negative but are modest in size.
Secondly, the welfare impacts of biophysi-
cal uncertainty are asymmetric. At high
yields, the positive welfare deviations from
the mean impacts are far smaller than the
negative welfare changes induced by draw-
ing from the low end of the yield distribu-
tion. This is partly a result of asymmetric
uncertainties in the yield response function
(which are determined non-parametrically
using a block-bootstrap procedure), but is
exacerbated by the disproportionate welfare
effects of very adverse productivity shocks.
This underscores the significant downside
risk associated with climate impacts being
worse than expected. In this case, there
could be substantial welfare losses to the
most vulnerable economies. The asymmet-
ric risks stemming from biophysical uncer-
tainties are further compounded by the
uncertainties in the trade elasticities. These
too, have an asymmetric impact on welfare.
With a few exceptions, the welfare impact

of varying the trade elasticities is larger in
the presence of low yield realizations.

In order to explore this interplay more
fully we refer next to figure 7, which organ-
izes the same information in a different way.
Each of the panels in this figure contains
three points for each of the 140 regions in the
trade model, each of the three pertaining to
different values of the trade elasticities (low,
medium, and high). Each panel refers to a
different draw from the biophysical impacts
distribution. The first panel corresponds to
the most adverse climate impacts (2.5 percen-
tile). Here we also see the largest spread of
welfare impacts. The second and third panels
refer to the modal (50th percentile) and high
(97.5 percentile) yield outcomes. Here, it is
clear that the mean yield shocks have a lim-
ited impact on regional welfare and are there-
fore potentially of less interest. Also, it is
hardly surprising that, when the climate out-
come is more positive (97.5th percentile),
most regions tend to gain, while the low draw
(2.5th percentile) results in the majority of
countries losing from the climate impacts on
these 4 major crops.

The scatterplot in each of the panels in fig-
ure 7 plots the welfare change under the modal
trade elasticity (50th percentile), against that
obtained from simulating the model with the
low (2.5th percentile¼ red diamonds), medium
(black dots), and high (97.5th percentile ¼
black triangles) trade elasticities. By construc-
tion, the black dots lie along the 45-degree
line. The interesting question is how much the
diamonds and black triangles deviate from the
45-degree line, a measure of the importance of
varying trade elasticities in driving welfare

Figure 7. Scatterplot of regional welfare consequences for each trade elasticities percentile un-
der 2.5% 50.0% and 97.5% climate impacts

Note: Observations which depart significantly from the 45-degree line indicate a significant role for the trade elasticities.
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effects. Generally speaking, the deviations are
greatest for the red diamonds, suggesting that
the welfare effects of climate changes are most
pronounced when the trade elasticities in the
model are at the lower end of the estimated
distribution. This makes sense, since smaller
trade elasticities require larger price changes
in order to re-equilibrate markets in the wake
of a climate change shock. A further observa-
tion is that this variation in the trade elastici-
ties is most important (i.e., the divergence
from the 45-degree line is largest) when the cli-
mate shock is adverse, again demonstrating
the fact that trade plays a particularly impor-
tant role in determining welfare consequences
in the presence of large productivity shocks.

Discussion and Limitations

Climate change will have spatially-
heterogeneous effects on agricultural produc-
tivity around the world, determined by geo-
graphic factors such as the pattern of global
warming and initial growing-season tempera-
tures. But the welfare consequences of these
shocks is partly determined by the economic
geography of the agricultural trade network,
shaped by trade costs and historical trading
relationships. Here we provide a decomposi-
tion of the welfare consequences of climate
change impacts in agriculture and demon-
strate the important interaction between
these two geographies: the more climate
change shifts comparative advantage rather
than simply changing aggregate productivity,
the larger the role of trade in determining
welfare outcomes. Moreover, the ability of
the trade network to adjust in response to cli-
mate change impacts, determined by trade
elasticities, is particularly important for large
and negative productivity shocks.

However, there are important limitations
of this study. First and foremost is its limited
coverage of the food system. While the four
crops included here account for a very large
share of global calorie consumption, many
other crops are also likely to be affected by
climate change. Unfortunately, there are in-
sufficient studies—either empirical or model-
ing based—to permit us to undertake a meta-
analysis of these impacts. In the future, it will
be important to extend our meta-analysis to
more crops. In addition, we expect that the
livestock sector will be affected by global
warming (McCarl and Hertel 2018) and this

may have important impacts, in turn, for the
derived demand for feedstuffs. Finally, the
fisheries sector is expected to experience neg-
ative impacts—particularly in the tropics
(IPCC 2014). Any comprehensive analysis of
the welfare consequences of climate impacts
on food security must address all of these
pathways.

A more specific limitation of this work is
the fact that we have modeled farmer
responses to climate change at the national
level. Yet Costinot, Donaldson, and Smith
(2016) argue that the largest economic adjust-
ments are likely to come from the realloca-
tion of production within countries. Future
work should combine the approach used here
with a global, gridded economic modeling ap-
proach so that the economic consequences of
the heterogeneous biophysical geography can
play out at a sub-national level.

Another important limitation—and one
that is shared with the Costinot, Donaldson,
and Smith study—is that we impose future
climate change on the current economy.
While projecting the global economy forward
over the twenty-first century is conceptually
appealing, it is fraught with challenges—par-
ticularly in the context of global general equi-
librium modeling in which there are roughly
one-half million bilateral trade flows.
Furthermore, as Cai, Golub, and Hertel
(2017) highlight in their study of optimal agri-
cultural R&D investment, the uncertainties
in population and income growth, and the
economic responses to these global drivers,
dwarf the impacts of climate change on agri-
culture over the coming century. We prefer
to hold the economic environment constant,
while examining the impact of climate change
on agriculture. This allows us to systemati-
cally explore the climate impact uncertain-
ties, as well as the uncertainties in trade
response to these shocks, and their
interactions.

Our investigation of the interplay between
the terms of trade effects (economic geogra-
phy, as reflected in bilateral trade patterns)
and the biophysical (direct) impacts of cli-
mate change has important implications for
future research in this area. Firstly, it demon-
strates the important role of international
trade in climate change adaptation—particu-
larly for agricultural commodities. We show
that the geography of climate impacts is inex-
tricably interwoven with the geography of in-
ternational commodity flows: removing one
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renders the other less relevant. In particular,
as we remove the sources of spatial heteroge-
neity in the direct impacts of climate change,
the indirect impacts—as mediated through
international trade—also diminish in impor-
tance. This has important implications for
those studying the economic and food secu-
rity consequences of global climate impacts
on agriculture that can be broken into two
strands. The most sophisticated work on cli-
mate impacts builds heavily on the AgMIP
community and devotes great attention to the
spatial distribution of climate impacts and as-
sociated uncertainties. However, in this com-
munity, trade modeling receives relatively
less attention. The second strand of research,
coming largely from the international trade
literature, entails relatively simplistic treat-
ments of climate impacts, but has a more so-
phisticated empirical approach to trade
modeling. Our findings suggest that both are
needed in order to obtain an accurate picture
of the spatial distribution of welfare changes
owing to climate impacts in agriculture.

Conclusions

This paper contributes to the literature on
the economic consequences of global climate
change impacts on agriculture by exploring
the interplay between the biophysical and
economic geographies of these impacts. It
does so by bridging the extensive body of lit-
erature on climate impacts on yields and
physical productivity in global crop produc-
tion with the less-well developed literature
on the economic geography of climate change
impacts. As with the Global Gridded Crop
Model Intercomparison coordinated by
AgMIP, as well as the work of Costinot,
Donaldson, and Smith (2016), we evaluate
the impacts of climate change on a global
grid. However, instead of using a specific
crop model or set of models, we instead em-
ploy a statistical meta-analysis that encom-
passes all studies available to the IPCC-AR5.
Not only is this approach more comprehen-
sive, it also permits us to isolate specific ele-
ments of the spatial distribution of climate
impacts, including the role of initial tempera-
ture, differential patterns of warming, and
differential crop responses to warming across
the globe. This statistical meta-analysis also
allows for a more sophisticated analysis of
the uncertainties associated with climate

impacts on agriculture in which we explore
the consequences of outcomes at the tails of
the climate-laden yield distribution.

In order to explore the welfare consequen-
ces and economic interplay with this biophysi-
cal geography, we use the GTAP model of
global trade, coupled with econometrically-es-
timated trade elasticities. This allows us to de-
compose the sources of welfare changes into
three components: the direct (biophysical im-
pact) contribution to welfare, the terms of
trade effect, and the efficiency effect. We find
that the terms of trade interact in a significant
way with the biophysical geography of climate
impacts. When we remove the spatial varia-
tion in biophysical impacts, the terms of trade
impacts are greatly diminished. And when we
allow the biophysical impacts to vary across
the estimated distribution taken from the
meta-analysis, we find that the welfare conse-
quences are highly asymmetric, with much
larger losses at the low end of the yield distri-
bution than gains at the high end.
Furthermore, by drawing on the estimated sta-
tistical distribution of trade elasticities, we are
also able to explore the interplay between
economic and biophysical uncertainties. Here,
we find that regional welfare is most sensitive
to variation in trade elasticities in the presence
of yield outcomes at the lower end of the cli-
mate change impacts distribution.

Supplementary Material

Supplementary materials are available at
American Journal of Agricultural Economics
online.
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