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Abstract

This paper introduces a nonlinear certainty equivalent approximation
method for dynamic stochastic problems. We first use a novel, stable
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inequality constraints that occasionally bind. These features make
the nonlinear certainty equivalent approximation method suitable for
solving complex economic problems, where other algorithms, such as
log-linearization, fail or are far less tractable.

Keywords: New Keynesian DSGE model, competitive equilib-

rium, parallel computing, sparse grid approximation, real business

cycle model, occasionally binding constraints
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1 Introduction

Many important problems across di↵erent fields of economics require solving

dynamic stochastic general equilibrium (DSGE) or optimal decision-making

problems. Numerical dynamic programming (DP) is a typical method to

solve such problems, by formulating them as Bellman equation (Bellman

1957), and then solving them with value function iteration (or some ac-

celerating methods like policy function iteration) or time iteration.1 How-

ever, implementing numerical DP faces challenging problems such as time-

consuming high-dimensional integration, keeping the shape properties of the

value/policy function approximation (Cai and Judd 2013, 2015), choosing ap-

propriate approximation domains, avoiding possible non-convergence because

of accumulated approximation errors, dealing with the kinks from inequal-

ity constraints that occasionally bind, and many other challenges. Choosing

a good approximation can be particularly challenging for multi-dimensional

dynamic stochastic problems where the domain of state variables expands

quickly over time, while a wider domain requires a higher degree approx-

imation. Its implementation for high-dimensional problems is very time-

consuming even if we take advantage of recent innovations, such as parallel

dynamic programming methods (Cai et al. 2015b) in a supercomputer or a

1For a detailed discussion of these methods, see Judd (1998), Bertsekas (2005, 2007),
Rust (2008), and Cai and Judd (2014).
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computational grid.

Because of these challenges it is common in applied computational eco-

nomics to rely on methods other than numerical DP, and sacrifice the ac-

curacy of the results for the greater ease of numerical implementation. The

most common method is log-linearization; Magill (1977) brought linearization

methods for dynamic stochastic models to economics. Linear (and log-linear)

approximations produce decision rules that depend only on the state of the

dynamical system. They are also called certainty equivalent approximations

because they do not depend on the variance of any random variable. Because

of its local nature, log-linearization often fails to give a good solution on

states that are not near to the steady states.2 In particular, log-linearization

approximations are unsuitable for problems with inequality constraints that

bind at states significantly far from the steady state.

This paper introduces a new method for solving DSGE or optimal decision-

making problems, which we call the nonlinear certainty equivalent (NLCEQ)

approximation method. Application of certainty equivalence approximations

goes back to Simon (1956) and Theil (1957), who suggested solving dynamic

programming problems with quadratic objectives and linear transition laws

by optimizing under perfect foresight, and then using optimal deterministic

forecasts for approximating unknown future values. They have also demon-

strated that for some stochastic control problems, the certainty equivalent

approximation is the exact solution for the optimal decision rules.3 The NL-

CEQ method is a natural extension of the idea of a certainty equivalent in

that it solves for a nonlinear decision rule for the non-stochastic problem that

is globally valid and applies this decision rule to the stochastic model.4 The

2For more detailed discussion of perturbation methods in economics, see Gaspar and
Judd (1997), Jin and Judd (2002), Schmitt-Grohe and Uribe (2004), Fernandez-Villaverde
and Rubio-Ramirez (2006), Kim et al. (2008), Benigno and Woodford (2012), and Den
Haan and De Wind (2012).

3For a formal derivation of this result see, e.g., Hansen and Sargent (2005, section 3.2).
4Solvability of NLCEQ method follows directly from the global concavity of the value

function by implicit di↵erentiation, see e.g., Theorems 1 - 6 in Jin and Judd (2002).
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NLCEQ method chooses a set of states, solves the deterministic dynamic

optimization problem using each of those points as the initial condition, and

then use numerical approximation methods to take the results and construct

a global nonlinear approximation for the value function and decision rules.

This method is simple, stable, and e�cient, and it can be naturally paral-

lelized with high e�ciency for high-dimensional problems. Furthermore, it

does not have the challenges faced by the numerical DP. Like log-linearization

(and other certainty equivalent approximations) it ignores the impact of un-

certainty on the decision rule, but it is better than log-linearization over

nontrivial neighborhoods of the deterministic steady state.

For deterministic dynamic problems (both social planner’s problems and

competitive equilibrium problems), NLCEQ can provide very accurate so-

lution. For stochastic dynamic problems, similar to other numerical ap-

proaches, it sacrifices some accuracy of the solution for the ease of numerical

implementation. However, NLCEQ has a number of important advantages

over those methods.

NLCEQ is very robust to break the curse of dimensionality, and, as we

show below, it can be applied to solve high-dimensional problems with up

to four hundred state variables in minutes (by parallelism) with an accept-

able accuracy. Moreover, NLCEQ is also appropriate for solving dynamic

stochastic problems with inequality constraints that occasionally bind, where

perturbation is well known for its failure to get solutions with acceptable ac-

curacy. Furthermore, NLCEQ provides a global solution that can be used

for e↵ective impulse function analysis.

These attractive features make NLCEQ suitable for solving complex eco-

nomic problems, where other algorithms fail or are too costly to get solutions

with acceptable accuracy. Of course, like any numerical methods, NLCEQ

has its own limitations: it may be not applicable to problems, where the

presence of uncertainty in the original problem does significantly a↵ect op-
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timal decision rules, such as dynamic portfolio optimization,5 or problems

with recursive preferences (Epstein and Zin 1989).6 Like log-linearization

(and other certainty equivalent approximations), NLCEQ also has a limit

on its accuracy because it ignores the impact of uncertainty. However, as

we show in our examples, this accuracy limit is acceptable. In fact, our re-

sults show that NLCEQ has about order-2 higher accuracy than log-linear or

log-linear-quadratic perturbation methods for multi-country optimal growth

problems.

In this paper we apply the NLCEQ method to solve three social planner’s

optimal decision-making problems and one competitive equilibrium problem.

Our first example is a multi-country real business cycle (RBC) problem (Den

Haan et al. 2011). We first show that NLCEQ achieves higher accuracy than

log-linear or log-linear-quadratic perturbation methods in low-dimensional

RBC problems, and then demonstrate that NLCEQ can solve up to a 200-

country RBC problem (400 state variables) in minutes by parallelism with an

acceptable accuracy. Our second example is a RBC model with an occasion-

ally binding constraint on investment (Christiano and Fisher 2000; Guerrieri

and Iacoviello 2015), and it shows that NLCEQ can easily deal with occasion-

ally binding constraints. Our third example is a dynamic stochastic model

of food and clean energy (Chakravorty et al. 2008), which has inequality

constraints that occasionally bind. Moreover, the problem’s initial state is

far away from its steady state and even its state path cannot reach its steady

state in a finite time. Our results show that NLCEQ achieves an accept-

able accuracy in solving these problems, which are quite challenging for all

5For example, if we apply NLCEQ to solve one portfolio problem assuming no trans-
action costs, its solution will be investing all money in the risky asset with the largest
expected return. However, if the portfolio problem has transaction costs or does not
use a HARA utility, it could also be challenging for other methods as its wealth domain
will expand quickly across time and it often has occasionally binding constraints (e.g.,
shorting/borrowing is disallowed or limited). For more details about dynamic portfolio
optimization see Infanger (2006) and Cai et al. (2013).

6Perturbation methods could get a locally accurate solution for problems with recursive
preferences, see Caldara et al. (2012).
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other general numerical methods to the best of our knowledge. Our final

example is a New Keynesian DSGE model with zero lower bound (Guerrieri

and Iacoviello 2015). Solving New Keynesian DSGE models have been stud-

ied frequently in the literature, such as Woodford (2003), Del Negro et al.

(2007), Smets and Wouters (2007), Gali (2008), Maliar and Maliar (2015),

Fernández-Villaverde et al. (2015), and Guerrieri and Iacoviello (2015). Our

results show that NLCEQ can easily solve competitive equilibrium problems

with occasionally binding constraints.7

The paper is organized as follows. Section 2 introduces the NLCEQ

method. Sections 3-6 apply NLCEQ to respectively solve multi-country RBC

problems, a RBC model with a constraint on investment, a dynamic stochas-

tic model of food and clean energy, and a New Keynesian DSGE model with

zero lower bound. Section 7 concludes.

2 NLCEQ Method

An infinite horizon stochastic optimal decision-making problem can be

expressed by the following general model:

V (x
0

) = max
a

t

2D(xt )

E
( 1
X

t=0

�tu (x
t

, a
t

)

)

,

s.t. x
t+1

= g (x
t

, a
t

, "
t

) ,

(1)

where x
t

2 Rd is a state vector process with an initial state x
0

(each state

variable could be either continuous or discrete), a
t

2 Rn is the vector of

7In this paper, we use GAMS (McCarl et al. 2011) code for all examples except for
high-dimensional problems in Subsection 3.4. The NLCEQ method can also easily be
implemented in other programming languages like MATLAB or Dynare (Adjemian et al.
2011). We use CONOPT (Drud 1996) as the optimization solver in our GAMS code, run
them on one 3.5GHz Intel processor, and get the solution in seconds/minutes for each
case. For high-dimensional problems in Subsection 3.4, we use Fortran code and SNOPT
(Gill et al. 2005) as the optimization solver, implement parallelism on a supercomputer,
and then get solutions in minutes.
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action variables at time t, "
t

is a serially uncorrelated random vector process

with identical and independent distributions across time (for simplicity, we

assume that the mean or median of "
t

is zero), u(x, a) is a utility function,

g (x, a, ") is the stochastic law of motion for the state variable vector x, � is

the discount factor (0 < � < 1), D (xt) is a feasible set of action a
t

, and E {·}

is the expectation operator. Here, g is a general transition law of the vector

of state variables, but some elements of the state variable vector x could be

exogenous or have a deterministic transition law independent of ".

To solve the problem (1), value function iteration is often used by solving

the following Bellman equation backwards:

V
t

(x
t

) = max
a

t

2D(xt )

u (x
t

, a
t

) + �E {V
t+1

(x
t+1

)} ,

s.t. x
t+1

= g (x
t

, a
t

, "
t

) .
(2)

Numerical implementation of value function iteration can be challenging for

a number of reasons. It requires choosing an appropriate approximation

domain for the state variables, which can be way wider than the one we

are interested in, because of the stochasticity in the transition law of the

states. In particular, when ✏
t

has an infinite support, this may lead to an

infinite support for x
t+1

so that we have to use some remedies like truncation

methods. Their impact on the solution is, however, hard to be measured.

Moreover, a wider domain requires a higher-degree approximation for the

value functions, and then requires more time for an optimization solver to find

the optimal solution of the Bellman equation. In addition, in the presence of

multiple uncertainties, the integration part of the Bellman equation can be

very time-consuming, and may even become infeasible, to get a good accuracy

for high-dimensional integration. Finally, many problems have occasionally

binding constraints which lead to kinks in value functions, a big challenge

for multi-dimensional value function approximation.8

8Cai and Judd (2012) propose a rational spline interpolation method for value function
approximation so that the value function iteration is stable and accurate for the problems
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Algorithm 1 Nonlinear Certainty Equivalent Approximation Method for
Infinite-horizon Stochastic Dynamic Programming Problems

Step 1. Transformation step. Transform the infinite-horizon stochastic
problem into a finite horizon deterministic optimal decision-making
problem:

eV (x
0

) = max
a

t

2D(xt )

T�1

P

t=0

�tu (x
t

, a
t

) + �T

eV
T

(x
T

) ,

s.t. x
t+1

= g (x
t

, a
t

, 0) ,
(3)

where eV
T

is a terminal value function given by an initial guess of the
value function V .

Step 2. Optimization step. Choose a set of approximation nodes, X = {xj

0

:
1  j  m} ⇢ Rd, and compute vj = eV

�

xj

0

�

and its corresponding

optimal initial action aj

0

2 Rn using an optimization solver to solve (3),
for each xj

0

2 X, 1  j  m.

Step 3. Approximation step. Using an appropriate approximation method,
such that V̂ (x

0

;b
v

) approximates {(xj

0

, vj): 1  j  m} data and a
vector of functions P̂(x

0

;b
a

) approximates {(xj

0

, aj

0

): 1  j  m}, i.e.,
vj ⇡ V̂ (xj

0

;b
v

) and aj

0

⇡ P̂(xj

0

;b
a

) for all xj

0

2 X, where b
v

and b
a

are
vectors of parameters.

However, in many cases it is acceptable to obtain a solution to the prob-

lem (1) with less demanding accuracy. For these cases, below we propose

a simple and fast nonlinear certainty equivalent (NLCEQ) approximation

method (Algorithm 1) to obtain the value function V and corresponding

optimal decision rules.

NLCEQ is a natural extension of the certainty equivalent approxima-

tion idea that the locally accurate linearization (log-linearization) method

implements, but it solves the deterministic optimization problems to find ap-

proximate values of value/policy functions at pre-specified state nodes and

with kinks, but it applies to problems with only one continuous state variable.
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then uses global nonlinear approximation methods to get the approximate

value/policy functions, so NLCEQ is a globally accurate method. Because

(3) is a convex optimization problem for most of dynamic programming prob-

lems in economics, NLCEQ is stable and can work well for problems with

occasionally binding constraints. Stability of the NLCEQ algorithm ensures

that solution accuracy is little changed by variations in model parameter

values (we illustrated this in examples of Subsection 3.2). 9

If there is no uncertainty in the underlying problem, the NLCEQ method

gives us a very accurate value and policy function for large enough T . For

the stochastic problems, NLCEQ can give an estimate of the value/policy

functions, which can be subsequently employed in the economic analysis,

such as impulse function analysis and sensitivity analysis. To obtain more

accurate approximation, if necessary, we can use the solutions of NLCEQ,

V̂ (x
0

;b
v

) and P̂(x
0

;b
a

), as the initial guess for the value/policy functions,

and then apply other more accurate methods like numerical value function

iteration (Cai and Judd 2014). When there is some freedom in choosing T ,
eV
T

, approximation nodes, and approximation methods, a criterion to choose

them is that global errors defined in a way like in equation (19) are small

(note that global errors are always no less than Euler errors). We will discuss

the steps in more details below.10

After we get the optimal policy functions P̂(x
0

;b
a

), it is easy to do a

forward simulation: with a given initial state x
0

and one simulation path "
t

,

we use a
t

= P̂(x
t

;b
a

) to get x
t+1

= g (x
t

, a
t

, "
t

) for any time t = 0, 1, 2, ....

That is, in the simulation process, we do not need to repeatedly apply NL-

CEQ or solve its optimization problem (3); instead we only need to use the

solved policy functions P̂(x;b
a

) while making sure that x
t

is located inside

9A standard way to avoid any problems with model calibration and sensitivity analysis
is to choose a wide approximation domain, so that changing calibrated parameter values
does not push state variables outside the approximation domain, and choose large enough
T so that the terminal value functions do not have a significant e↵ect on the solution.

10For a more complete and general discussion on approximation and optimization in
solving dynamic stochastic problems, see Judd (1998) and Miranda and Fackler (2002).
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the approximation domain.11 We can do an impulse response analysis in a

similar way.

2.1 Transformation

In the transformation step of the NLCEQ method, it is usually straight-

forward to obtain deterministic transition laws for continuous state vari-

ables. For example, if an exogenous state ✓
t

has a transition law: ln(✓
t+1

) =

⇢ ln(✓
t

)+�✏
t+1

, where ✏
t+1

⇠ N (0, 1) enters linearly into the law of motion of

the exogenous state, then a simple transformation is to set ln(✓
t+1

) = ⇢ ln(✓
t

).

A more general choice of the transformation is ln ✓
t+1

= ⇢ ln ✓
t

� f(�) with

function f chosen in such way that the deterministic u(x
t

, a
t

) is close to the

expectation of stochastic utility, i.e, the deterministic u(x
t

, a
t

) is nearly a

certainty equivalent of its stochastic version. One example of such transfor-

mation is shown in Subsection 4.3, where we obtain more accurate solution

by choosing ln(✓
t+1

) = ⇢ ln(✓
t

) � 0.5�2 with � = 0.05. Using this general

transformation, we can deal with problems such as stochastic volatility (see

e.g., Caldara et al. 2012).

To choose the terminal value function, a typical way is to assume that it

reaches an equilibrium at T , that is, the vector of control variables is chosen

to be a⇤
T

so that next-period state is equal to current state x
T

, and then we

let eV
T

(x
T

) = u (x
T

, a⇤
T

) /(1 � �). We use this in our multi-country RBC

examples. Another potential way is to use a second-order perturbation as

the terminal value function, but we do not apply it in this paper because we

want to focus on NLCEQ only, without hybrid algorithms. The truncation

time, T , depends on the terminal value function and the discount factor. If

the terminal value function is close to the true value function, then T could

11That is, we have to choose an appropriate approximation domain in the optimization
step, so that it is wide enough to contain simulated future states. This can be done in
an iterative way: first guess a wider approximation domain, and then use the NLCEQ
solution over it to do simulation: if the simulated states locate in a much more narrow
domain, choose the narrower domain to re-run NLCEQ algorithm for a more accurate
solution.
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be small, for example, we choose T = 20 for some large-dimensional multi-

country RBC examples in Section 3; otherwise, T could be chosen such that

�T < 10�4 if it is hard to find a terminal value function close to the true value

function. For example, we choose T = 200 in the example with � = 0.95 in

Section 5 such that �T = 3.5⇥ 10�5.

We can also apply NLCEQ to problems with a discrete stochastic state

✓
t

by replacing it by its expected value conditional on its initial value, i.e.,

E{✓
t

| ✓
0

}. For example, let ✓
t

be an exogenous Markov chain with k possible

values, {#
1

, ...,#
k

}, and let P be its k ⇥ k transition matrix, where its (i, j)

element represents the probability of ✓
t+1

= #
i

conditional on ✓
t

= #
j

. If the

initial-time value of ✓
t

is #
i

(i.e., ✓
0

= #
i

), then we know that its unconditional

probability vector at time t is p
t,i

= P te
i

, where e
i

is the column vector with

1 at the i-th element and 0 everywhere else. Thus, in the transformation

step, we set the transformed deterministic value for ✓
t

as its expected value,
P

k

j=1

p
t,i,j

#
j

, conditional on its initial value ✓
0

= #
i

, where p
t,i,j

is the j-th

element of the vector p
t,i

. Our example in Section 5 has a discrete stochastic

state and applies this method.

2.2 Optimization

In the NLCEQ method, the optimization step will be time-consuming for

high-dimensional problems, but they can be naturally parallelized across the

approximation nodes, as every node corresponds to one optimization prob-

lem, which is independent of the others. Moreover, each optimization prob-

lem has a sparsity structure: the action variables and state variables at time

t are only connected with the state variables at t� 1 and t+1, that is, it has

the block-wise tridiagonal pattern in the constraints. We employ this sparsity

in optimization solvers like the one we used in our high-dimensional multi-

country RBC examples, SNOPT (Gill et al. 2005), so that each optimization
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problem can be solved more e�ciently.12

2.3 Approximation

For low-dimensional problems, we can use a variety of approximation meth-

ods like, for example, multi-dimensional Chebyshev polynomial approxima-

tion (see Appendix A). However, one advantage of NLCEQ is that it can

be applied to large-dimensional problems. For large-dimensional problems,

we will use sparse grid approximation methods. For example, in our large-

dimensional examples, we employ Smolyak grid points as the approximation

nodes and Chebyshev-Smolyak polynomials as the approximation method

(Smolyak 1963 and Malin et al. 2011).13 Moreover, we can also implement

adaptive sparse grid methods (Brumm and Scheidegger 2014) in NLCEQ.

After we get the approximated value/policy functions, bV (x
0

;b
v

) and
bP(x

0

;b
a

), it is essential to estimate their errors to the “true” solution so

we know whether NLCEQ gives an acceptable solution. In our examples

below we implement the unit-free Euler error measure. We also compute

approximation errors for the approximation functions. That is, we choose

a set of out-of-sample points, bX = {

bxj

0

: 1  j  bm} ⇢ Rd, and compute

bvj = eV
�

bxj

0

�

and its corresponding optimal initial action baj

0

2 Rn using op-

12Optimization step of NLCEQ algorithm can be employed with a variety of modern
nonlinear optimization solvers, such as e.g., SNOPT (Gill et al. 2005), CONOPT (Drud
1996), and KNITRO (Byrd et al. 2006). These solvers are also freely available at the
NEOS server (Czyzyk et al. 1998; Gropp and Moré 1997) with two popular high-level
modeling languages: GAMS (McCarl et al. 2011) and AMPL (Fourer et al. 2003). If the
code is written in MATLAB, it can call its internal optimization routine, fmincon, or an
external solver such as KNITRO.

13Smolyak polynomials do not preserve shape of value functions, so using them in stan-
dard value function iteration can easily make it fail because the optimization problem in
the Bellman equation becomes a non-concave/non-convex problem, thus it is very chal-
lenging to find the global maximizer by a standard optimization solver. See Cai and Judd
(2013, 2015) for discussion about the importance of shape preservation in numerical DP.
However, with NLCEQ algorithm we do not need to use the approximate value functions
in the objective of an optimization problem, so it does not face the shape-preservation
challenge while the value function iteration does.
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timization solver to solve (3), for each bxj

0

2

bX, 1  j  bm. Using these bvj,

we compute the approximation errors in the L

1 or L

1 norm for the value

function with the following formulas:

bEL1 = max
1jbm

�

�

�

bvj � bV (bxj

0

;b
v

)
�

�

�

1 + |bvj|

bEL1 =
1

bm

X

1jbm

�

�

�

bvj � bV (bxj

0

;b
v

)
�

�

�

1 + |bvj|

Similarly, we can compute approximation errors for the policy functions. In

our examples, we let bX be a set of 1000 points uniformly and randomly

drawn in the approximation domain. Note that the computation of bvj =
eV
�

bxj

0

�

and its corresponding baj

0

can be parallelized naturally together with

the optimization step of NLCEQ.

2.4 NLCEQ Method for Competitive Equilibrium

Algorithm 1 describes the NLCEQ method for social planner’s decision-

making problems, but it can also be modified for solving competitive equilib-

rium. Similar to the transformation step of Algorithm 1, we first remove the

stochasticity of models by replacing those shocks by their mean or median.

For the transformed deterministic problem, its equilibrium solution should

satisfy a set of equations (including the deterministic version of Euler equa-

tions, deterministic transition laws of states, market clearing conditions, and

other first-order conditions):

F(x
t

, a
t

,x
t+1

, a
t+1

) = 0, , t = 0, 1, 2, ... (4)

where x
t

is the state vector, and a
t

is the action vector that should satisfy

constraints a
t

2 D (xt). If there are occasionally binding constraints, then
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Algorithm 2 Nonlinear Certainty Equivalent Approximation Method for
Competitive Equilibrium

Step 1. Transformation step. Transform the stochastic problem into a finite-
horizon deterministic system (5).

Step 2. Optimization step. Choose a set of approximation nodes, X = {xj

0

:
1  j  m} ⇢ Rd. For each xj

0

2 X, solve (5) and get its corresponding
optimal initial action with aj

0

.

Step 3. Approximation step. Use an appropriate approximation method,
such that P̂(x

0

;b
a

) approximates {(xj

0

, aj

0

): 1  j  m}, where b
a

is
a vector of parameters.

the arguments of F should also contain corresponding Lagrange multipliers

that we omit below without loss of generality. Moreover, we know that its

state and control variables will converge to its steady values (x
ss

, a
ss

) as time

goes to infinity, i.e.,

x1 = x
ss

, a1 = a
ss

.

To solve the above infinite-horizon system (4), we approximate it as the

following minimization problem with a finite horizon and a given initial state

xj

0

:

min
a

t

2D(xt )

�

�xEndo

T

� xEndo

ss

�

�+ ka
T

� a
ss

k (5)

s.t. F(x
t

,a
t

,x
t+1

,a
t+1

)=0, t = 0, 1, ..., T � 1,

x
0

= xj

0

,

where k·k is a norm and xEndo represents the endogenous state variables. By

sweeping over the approximation nodes of xj

0

, we can construct the approxi-

mation of policy functions over the state space. Algorithm 2 summarizes the

NLCEQ method for solving competitive equilibrium.

Algorithm 2 yields very accurate solution of a deterministic competitive

14



equilibrium problem for large enough T . Similar to Algorithm 1, Algorithm

2 is also stable and e�cient, and can be naturally parallelized in its opti-

mization step, so that it can solve large-dimensional problems using sparse

grid approximation methods.

Algorithm 2 can also be applied to solve social planner’s stochastic dy-

namic programming problems, but Algorithm 1 is easier to implement as

it does not require formulating the first-order conditions. Therefore, in the

examples of this paper, we will use Algorithm 1 for solving social planner’s

problems and Algorithm 2 for computing competitive equilibrium. .

3 Application to multi-country real business

cycle model

We apply NLCEQ to solve a multi-country real business cycle (RBC) model

introduced in Den Haan et al. (2011). We assume that there are N countries

with a capital stock state vectorK
t

= (K
t,1

, ..., K
t,N

) and a productivity state

vector ✓
t

= (✓
t,1

, ..., ✓
t,N

) at the beginning of period t. For the j-th country,

its production at time t is given by ✓
t,j

f(K
t,j

, `
t,j

), where `
t,j

is labor supply

and f is the Cobb-Douglas production function

f(K
t,j

, `
t,j

) = A(K
t,j

)↵(`
t,j

)1�↵, (6)

where ↵ is the expenditure share of capital in the production and A is the

productivity parameter. The law of motion of capital is:

K
t+1,j

= (1� �)K
t,j

+ I
t,j

(7)

where I
t,j

is investment and � is the depreciation rate of capital. The law of

motion of productivity is exogenous:

ln(✓
t+1,j

) = ⇢ ln(✓
t,j

) + �(✏
t+1,j

+ "
t+1

) (8)
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where ✏
t,j

, "
t

⇠ i.i.d. N (0, 1) are a country specific shock and a worldwide

shock, respectively.

The j-th country has an instantaneous utility

u
j

(c
t,j

, `
t,j

) =
(c

t,j

)
1� 1

�

j

1� 1

�

j

� B
j

(`
t,j

)
1+

1

⌘

j

1 + 1

⌘

j

(9)

where c
t,j

is consumption, �
j

is the inter-temporal elasticity of substitution,

⌘
j

is the Frisch elasticity of labor supply, and B
j

= (1 � ↵)A(�

j

�1)/�

j is the

relative weight of consumption and leisure in the welfare.

We want to solve a social planner’s problem with an aggregate utility

U(c
t

, `
t

), which is the weighted sum of the instantaneous utilities of all coun-

tries, i.e.,

U(c
t

, `
t

) =
N

X

j=1

⌧
j

u
j

(c
t,j

, `
t,j

)

where ⌧
j

= A1/�

j are Negishi weights, c
t

= (c
t,1

, ..., c
t,N

) and `
t

= (`
t,1

, ..., `
t,N

).

Let � be the discount factor, and let �
t,j

be an adjustment cost:

�
t,j

⌘

�

2
K

t,j

✓

I
t,j

K
t,j

� �

◆

2

(10)

with � as the intensity of the friction. The social planner problem then

becomes

max
c,`,I

E
 1
X

t=0

�tU(c
t

, `
t

)

!

(11)

subject to (7), and the following aggregate world resource constraint:

N

X

j=1

(c
t,j

+ I
t,j

� �K
t,j

) =
N

X

j=1

(✓
t,j

f(K
t,j

, `
t,j

)� �
t,j

) . (12)

Therefore, the problem has 2N state variables, K
t

and ✓
t

, and 3N control

variables, c
t

, `
t

, and I
t

.
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In our example, we set A = (1 � �)/(↵�) and use the parameter values

in Juillard and Villemot (2011) as the default. That is, we set � = 0.99,

↵ = 0.36, � = 0.025, ⇢ = 0.95, � = 0.5, and � = 0.01, as the default

values. Since the optimal solution depends only on the states and not the

time t, we use (K, ✓) to denote current states by omitting the subscript t, and

use (K+, ✓+) to denote next-period states. We are interested in the policy

solutions over the domain of the state variables (K, ✓) 2 [0.7, 1.3]2N .

3.1 Error Measure

For a given current state vector (K, ✓), the first-order conditions of the RBC

model (11) tell us that the optimal policy (c, `, I) should satisfy

@u
j

@c
(c

j

, `
j

) ⌧
j

=
@u

j

0

@c
(c

j

0 , `
j

0) ⌧
j

0 , j0 6= j, (13)

@u
j

@`
(c

j

, `
j

) = �

@u
j

@c
(c

j

, `
j

) ✓
j

@f

@`
(K

j

, `
j

) , (14)

and the following N Euler equations:

@u
j

@c
(c

j

, `
j

)!
j

= E
⇢

�
@u

j

@c

�

c+
j

, `+
j

�



⇡+

j

+ ✓+
j

@f

@K

�

K+

j

, `+
j

�

��

(15)

for j = 1, ..., N. Here,

!
j

⌘ 1 + �

✓

I
j

K
j

� �

◆

, (16)

⇡+

j

⌘ 1 +
�

2

 

I+
j

K+

j

� �

! 

2� � +
I+
j

K+

j

!

, (17)

and (c+, `+, I+) is the optimal policy in the next period.

We use NLCEQ to get the estimate of the optimal policy functions of the

problem (11): C
j

(K, ✓) for consumption, L
j

(K, ✓) for labor supply, I
j

(k, ✓)
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for investment, and K

+

j

(K, ✓) = (1 � �)K + I

j

(K, ✓) for the next-period

capital. Thus, for any (K, ✓), we can compute c
j

= C
j

(K, ✓), `
j

= L
j

(K, ✓),

I
j

= I

j

(K, ✓), K+

j

= K

+

j

(K, ✓), c+
j

= C
j

(K+, ✓+), `+
j

= L
j

(K+, ✓+), I+
j

=

I

j

(K+, ✓+), and then !
j

and ⇡+

j

from the equations (16) and (17).

Therefore, for a given (K, ✓), we can compute the following unit-free Euler

error:

E
1

(K, ✓) = max
1jN

�

�E
�

F
j

�

K, ✓, ✓+
� 

� 1
�

� , (18)

with

F
j

�

K, ✓, ✓+
�

⌘

�
@u

j

@c

�

c+
j

, `+
j

�

@u

j

@c

(c
j

, `
j

)!
j



⇡+

j

+ ✓+
j

@f

@K

�

K+

j

, `+
j

�

�

.

Moreover, the unit-free errors for the intratemporal-choice conditions (13)

and (14) are also available:

E
2

(K, ✓) = max
2jN

�

�

�

�

�

@u

j

@c

(c
j

, `
j

) ⌧
j

@u

1

@c

(c
1

, `
1

) ⌧
1

� 1

�

�

�

�

�

,

E
3

(K, ✓) = max
1jN

�

�

�

�

�

@u

j

@c

(c
j

, `
j

) ✓
j

@f

@`

(K
j

, `
j

)
@u

j

@`

(c
j

, `
j

)
+ 1

�

�

�

�

�

.

The unit-free error for the resource constraint is given by

E
4

(K, ✓) =

�

�

�

�

�

P

N

j=1

(c
j

+ I
j

� �K
j

+ �
j

)
P

N

j=1

(✓
j

f(K
j

, `
j

))
� 1

�

�

�

�

�

.

Using the above errors for the first-order conditions and the resource con-

straint, we compute the following global L1 error on a domain of (K, ✓),

denoted D , to measure the accuracy of our solution:

E = max
(K,✓)2D

⇢

max
1i4

E
i

(K, ✓)

�

. (19)

Note that the estimated policy functions C
j

, L
j

and I

j

should be de-

fined not only in the domain of (K, ✓) 2 D (in our examples, we let D =
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[0.7, 1.3]2N), but also in a wider domain for (K+, ✓+). Therefore, in order to

get the Euler errors E
1

, we should apply NLCEQ in a wider domain than

what we are interested. In our examples, we choose a domain [0.5, 1.5]2N for

approximating NLCEQ policy functions, and then estimate the global error

in [0.7, 1.3]2N . In addition, we could have E
2

and E
3

(and even E
4

) to be

zero: for any (K, ✓), we let c
1

= C
1

(K, ✓) and compute other c
j

from the

equations (13) instead of letting c
j

= C
j

(K, ✓), and then compute `
j

from

(14) instead of letting `
j

= L
j

(K, ✓). This method may obtain a smaller

global error as it has smaller approximation errors from C
j

and L
j

. But this

method may require solving a complicated system of nonlinear equations, so

we do not apply it in this paper for more generality.

To compute the Euler error E
1

(K, ✓) for a given (K, ✓), we estimate the

integration in (18) using Monte Carlo simulation method with 10,000 points

randomly drawn from the distribution of ✓+ (when N  4, we can use the

Gauss-Hermite quadrature rule with 7 quadrature nodes in each dimension

for a faster run). Since the standard deviation of F
j

(k, ✓, ✓+) is around the

size of � in all of our cases, the accuracy of the numerical integration is

about 10�4, acceptable for measuring the errors of NLCEQ. In our results,

the global error E is estimated by the maximal value of max
1i4

E
i

(K, ✓)

among 10,000 randomly and uniformly drawn points (K, ✓) in the domain

[0.7, 1.3]2N . This is time-consuming for high-dimensional problems, but it

can also be parallelized naturally. For all of our examples, we computed the

standard error of the estimated expectation, and found that the standard

error is one or two orders of magnitude smaller than the Euler error, so

the numerical integration error is negligible in our computation of the Euler

error.

3.2 Examples for Accuracy Test

We first test NLCEQ for its accuracy for the two-country real business cycle

problem (i.e., N = 2), which has four continuous state variables: two capital
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stocks and two productivity levels. In the transformation step of NLCEQ

(Algorithm 1), we choose T = 50 and the problem becomes

eV (K
0

, ✓
0

) = max
c,`,I

T�1

P

t=0

�tU (c
t

, `
t

) + �T

eV
T

(K
T

, ✓
T

) , (20)

subject to (7) and (12) with a deterministic process of ✓
t

: ln(✓
t+1,j

) =

⇢ ln(✓
t,j

). The terminal value function eV
T

(K, ✓) is given as U(f(K, `⇤), `⇤)/(1�

�) with `⇤ = (1, ..., 1).

In the NLCEQ method, we first use the tensor grid of Chebyshev nodes

(D + 1 nodes in each dimension) over the domain of the state variables,

[0.5, 1.5]2N , and then apply degree-D complete Chebyshev polynomials in the

approximation step. Since we will apply NLCEQ to high-dimensional prob-

lems using the level-l Smolyak points and Chebyshev-Smolyak polynomials

(a subset of degree-2l complete Chebyshev polynomials) for approximation,

we also try them in the low-dimensional problems to check their accuracy.

Our starting examples have symmetric model specification, that is, we let

�
j

be a constant �, and let ⌘
j

be a constant ⌘. Table 1 lists the global errors

in L

1 norm over [0.7, 1.3]2N for the symmetric cases with � 2 {0.99, 0.95},

� 2 {0.25, 0.5}, ⌘ 2 {0.1, 0.5}, and � = 0.01.14 From Table 1, we see that

degree-4 complete Chebyshev polynomials have the smallest global errors at

O(10�3). 15

14The range for ✓, [0.7, 1.3]N , is narrow: from (8), if ✓t,j is inside the following range

"

exp

 

�

p

2�

1� ⇢

!

, exp

 

p

2�

1� ⇢

!#

,

which is close to [0.7, 1.3], then only when ✏t+1,j and "t+1 are simulated to let ✏t+1,j+"t+1

be bounded in [�
p

2,
p

2], we can make sure that ✓t+1,j is inside the same range. That is,
if ✓t,j is at one end of the range, then it has about 16% probability that ✓t+1,j is outside
of the range. Kollmann et al. (2011) also checked the errors of solutions of perturbation
methods on the sphere in the state space centered at the steady state with a radius 0.3.

15Since our solutions are independent of the value of � but the Euler errors E1 depend
on �, we also checked the errors with � = 0.02. We found that the global errors of � = 0.02
are the same with the ones of � = 0.01 although the �-related maximal Euler errors with
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Table 1: Global errors in L

1 norm for two-country problems
Global Error E

� � ⌘ degree-D Chebyshev level-l Smolyak
D = 2 D = 4 l = 1 l = 2

0.99 0.25 0.1 2.4(�2) 1.7(�3) 5.3(�2) 6.7(�3)
0.5 2.1(�2) 2.0(�3) 6.5(�2) 1.0(�2)

0.5 0.1 2.0(�2) 1.3(�3) 6.1(�2) 5.3(�3)
0.5 2.1(�2) 1.1(�3) 6.5(�2) 6.1(�3)

0.95 0.25 0.1 2.8(�2) 2.6(�3) 5.1(�2) 9.3(�3)
0.5 1.8(�2) 3.7(�3) 7.0(�2) 1.3(�2)

0.5 0.1 2.0(�2) 1.5(�3) 5.7(�2) 5.6(�3)
0.5 1.5(�2) 1.7(�3) 6.2(�2) 8.7(�3)

Note: ⇣(�j) represents ⇣ ⇥ 10�j.

Table 2: Errors in L

1 norm for two-country problems with � = 0
degree-D Chebyshev level-l Smolyak

D = 4 D = 6 D = 8 l = 2 l = 3 l = 4
Euler Error 4.2(�5) 2.1(�5) 2.1(�5) 2.6(�4) 2.7(�5) 2.1(�5)

Global Error 1.1(�3) 5.6(�5) 3.8(�6) 5.9(�3) 6.1(�4) 7.3(�5)

Note: ⇣(�j) represents ⇣ ⇥ 10�j.

We also show that NLCEQ (Algorithm 1) can very accurately solve de-

terministic dynamic problems. Table 2 lists the maximal Euler errors and

global errors in L

1 norm over [0.7, 1.3]2N for the two-country problem with

� = 0 and � = 0.99, � = 0.5, and ⌘ = 0.5 (the results are similar for other

values of (�, �, ⌘)). As we seek higher accuracy and the only source of errors

for deterministic problems comes from the truncation of infinite horizon and

the value/policy function approximation, we use a large T = 200 and high

degree approximation. From Table 2, we see that the global errors are al-

ways larger than Euler errors so it is not good enough to use Euler errors as

a criterion. Moreover, we see that our solution can reach five-digit accuracy

in L

1 for the deterministic problem.

� = 0.02 are a bit higher.
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3.3 Comparison with log-linearization

Log-linearization is the most popular method for solving dynamic stochastic

models. It is also a certainty equivalent approximation method: it computes

a log-linear approximation for the policy function of a deterministic problem

and uses it in simulations of the stochastic model. While this may be accept-

able for states close to the deterministic steady state, it is not likely to be a

good approximation beyond a small neighborhood around the steady state.

This is particularly relevant if the mean of the stochastic problem is not the

deterministic steady state.

We next present one two-country example where we compare NLCEQ

with log-linearization. We use an example with asymmetric model specifica-

tion, by assuming �
1

= 0.25 and ⌘
1

= 0.1 for the first country, and �
2

= 1 and

⌘
2

= 1 for the second country, in their utility functions. The other parame-

ters are set as their default values. We use the degree-4 complete Chebyshev

polynomials for approximation in NLCEQ.

For NLCEQ, the global L1 error, E , is 0.0014, which is similar to the

examples in Table 1. Kollmann et al. (2011) report the errors of solutions

from other methods for this asymmetric case (Model II with N = 2 in their

Table 4). The perturbation methods (order-1 or order-2) have large errors

on the sphere in the state space centered at the steady state with a radius

0.3 (this sphere is inside our domain [0.7, 1.3]2N). The L

1 error of the log-

linear approximation (i.e., the order-1 perturbation which is linear in log(K)

and log(✓)) is 0.51. Even its extended order-2 perturbation method (with

quadratic polynomials in log(K) and log(✓)) has an L

1 error equal to 0.21.

Thus, NLCEQ is far more accurate, up to two orders of magnitude higher,

than log-linearization over the wider and more relevant domain.
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Table 3: Errors and running times for high-dimensional RBC problems

N Level l
Num of Num of

T
Max Euler Global Time

Points Cores Error Error (minutes)
10 1 41 41 20 3.5(�3) 2.4(�2) 0.5

50 3.6(�3) 2.6(�2) 0.4
2 841 288 20 3.2(�3) 4.8(�3) 1.5

50 7.1(�4) 4.3(�3) 1.4
20 1 81 81 20 2.6(�3) 1.9(�2) 0.2

50 2.0(�3) 1.9(�2) 1.3
2 3,281 352 20 2.1(�3) 3.3(�3) 1.7

352 50 5.8(�4) 3.1(�3) 13.5
3,281 50 5.8(�4) 3.1(�3) 1.6

50 1 201 201 20 2.3(�3) 1.8(�2) 0.8
50 1.9(�3) 1.8(�2) 5.7

2 20,201 2,048 20 1.5(�3) 2.7(�3) 8.3
2,048 50 3.5(�4) 2.6(�3) 58.1
20,201 50 3.5(�4) 2.6(�3) 8.6

100 1 401 401 20 1.9(�3) 1.8(�2) 2.2
200 1 801 801 20 1.6(�3) 1.8(�2) 8.0

Note: ⇣(�j) means ⇣ ⇥ 10�j.

3.4 Application to High-dimensional Problems

In this subsection we use NLCEQ to solve the high-dimensional RBC prob-

lems with the default parameter values and �
j

⌘ 0.25 and ⌘
j

⌘ 0.1. We

use the same transformed deterministic model (20) with T = 20 or 50 for

more countries, and use the level-l Smolyak grid and Chebyshev-Smolyak

polynomials for approximation.

Table 3 lists the Euler errors and global errors in L

1 norm over [0.7, 1.3]2N

and running times (in wall clock time) in minutes, for cases with the number

of countries N = 10, 20, 50, 100, 200 (the dimension of continuous state vari-

ables is 2N). For example, for the case with N = 200 countries and T = 20,

its maximal Euler error is 0.0016 and its global error is 0.018, and it is solved

in only 8 minutes.
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We employ parallelism in a supercomputer. Table 3 lists the numbers

of approximation points (level-l Smolyak grid) and compute cores of the

supercomputer for all cases. For the level-1 Smolyak grid, the number of

cores is chosen to be same with the number of points, so each core runs

one approximation node corresponding to one optimization problem of the

deterministic model (20). For the level-2 Smolyak grid, we see that it will be

faster if we use more cores.16

From Table 3, we see that the level-2 Chebyshev-Smolyak polynomial ap-

proximation obtains about one more digit accuracy than the level-1 Chebyshev-

Smolyak polynomial approximation for every case. Moreover, T = 50 does

not improve much accuracy in global errors than T = 20 although it decreases

the maximal Euler errors, while T = 50 is far more time-consuming. With

the parallelism, although our examples have far higher numbers of countries

than those in Kollmann et al. (2011), we still get the optimal solutions with

an acceptable accuracy in minutes, much faster than the other methods listed

in Table 3 of Kollmann et al. (2011), except the perturbation methods which

will have large errors in the wide domain [0.7, 1.3]2N .

4 Application to a RBC model with a con-

straint on investment

While high dimensionality is an important computational challenge to solv-

ing dynamic stochastic problems, low-dimensional problems may have other

challenges of their own. For example, if there are occasionally binding con-

straints for state and/or control variables, then the kinks in the value/policy

functions often make the problem di�cult to be solved. One advantage of

NLCEQ is that it can solve the problems with inequality constraints that

occasionally bind. Here we illustrate this by applying NLCEQ to solve a

16If we can employ a parallel optimization solver for one approximation point so that
we can use more cores, then it could be even faster.
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RBC model with a constraint on investment.

4.1 Model Overview

We use the model in Guerrieri and Iacoviello (2015). That is, we solve the

following social planner’s problem:

max
c

E
( 1
X

t=0

�tU(c
t

)

)

(21)

subject to the following constraints

c
t

+ I
t

= A
t

k↵

t

, (22)

k
t+1

= (1� �)k
t

+ I
t

, (23)

I
t

� �I
ss

, (24)

for t � 0, where c
t

is consumption, I
t

is investment, k
t

is capital, and A
t

is

technology following the autoregression process

ln(A
t+1

) = ⇢ ln(A
t

) + �✏
t+1

, (25)

where ✏
t

is an exogenous innovation with standard normal distribution. We

use the parameter values in Guerrieri and Iacoviello (2015), that is, � =

0.96, � = 0.1, � = 0.975, ↵ = 0.33, ⇢ = 0.9, � = 0.013, U(c) = (c1��

�

1)/(1� �) with � = 2. Moreover, I
ss

is investment in the steady state of the

deterministic variant of the model (21) with A
t

⌘ 1. From the first-order

conditions for the deterministic variant, we know that the steady state is

k
ss

=

✓

1

↵

✓

1

�
� 1 + �

◆◆

1

↵�1

and I
ss

= �k
ss

⇡ 0.3533. Since the value of � is chosen to be close to 1, the

inequality (24) will bind frequently.
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4.2 Error Measure

Let �t�
t

denote the Lagrange multiplier of (24) at period t. We have the

consumption Euler equation and the Kuhn-Tucker condition for (24):

U 0(c
t

)� �
t

= �E
t

�

U 0(c
t+1

)
�

1� � + ↵A
t+1

k↵�1

t+1

�

� (1� �)�
t+1

 

�
t

(I
t

� �I
ss

) = 0

Similarly with the examples in the previous section, we use NLCEQ to get

the estimate of the optimal consumption function, C (k,A), and the function

for the Lagrange multiplier, ⇤(k,A), on a domain [0.5k
ss

, 1.5k
ss

]⇥ [0.5, 1.5].

The optimal investment function is I (k,A) = Ak↵

�C(k,A), and the next-

period capital is K+(k,A) = (1� �)k + I(k,A).

Using these approximate functions, for a given (K, ✓), we can compute

the following unit-free Euler error:

E
1

(k,A) =

�

�

�

�

�

�

�E
n

U 0(c+)
⇣

1� � + ↵A+ (k+)↵�1

⌘

� (1� �)�+

o

+ �

U 0(c)
� 1

�

�

�

�

�

�

,

(26)

where A+ is the next-period productivity, c = C (k,A) , � = ⇤(k,A), k+ =

K

+(k,A), c+ = C(k+, A+), and �+ = ⇤(k+, A+). We use the 15-point Gauss-

Hermite quadrature rule to estimate the integration in (26). Similarly, the

unit-free error for the Kuhn-Tucker condition is

E
2

(k,A) =

�

�

�

�

�

✓

I

�I
ss

� 1

◆

�

�

�

�

with I = I (k,A). The error measure for the investment constraint (24) can-

not be omitted, because the true solution of the model without the constraint

(24) will also have E
1

(k,A) = 0 and E
2

(k,A) = 0 with � = 0, that is, E
1

and E
2

are not enough for error measurement. Thus we need to check the

26



following unit-free error

E
3

(k,A) = max

✓

0, 1�
I

�I
ss

◆

.

We then compute the following global L1 and L

1 errors on a set of points

(k,A), denoted D , to measure the accuracy of our solution:

EL1 = max
i=1,2,3

⇢

max
(k,A)2D

E
i

(k,A)

�

,

EL1 = max
i=1,2,3

8

<

:

1

|D |

X

(k,A)2D

E
i

(k,A)

9

=

;

,

where |D | is the number of points in the set D . We choose two sets of points,

D
1

and D
2

, where D
1

is a set of 10,000 randomly and uniformly drawn in

[0.7k
ss

, 1.3k
ss

]⇥ [0.7, 1.3],17 and D
2

is a set of 10,000 simulated points in the

path of (k
t

, A
t

), where k
0

= k
ss

, A
0

= 1, A
t+1

is simulated based on the

stochastic process (25), and k
t+1

= K

+(k
t

, A
t

) for t = 0, ..., 9999. Thus, D
2

represents the ergodic set of (k,A), so the errors on D
2

are weighted errors

with more weights on the area around the steady state.

17Guerrieri and Iacoviello (2015) show their results in a much narrower range for A,
[0.97, 1.025]. However, our range for A, [0.7, 1.3], is reasonable: from ln(At+1) = ⇢ ln(At)+
�✏t+1, if At is inside the following range



exp

✓

�2�

1� ⇢

◆

, exp

✓

2�

1� ⇢

◆�

,

which is close to [0.7, 1.3], then only when ✏t+1 are always simulated in [�2, 2], we can
make sure that At+1 is inside the same range. That is, if At is at one end of the range,
then it has about 2.3% probability that At+1 is outside the range.
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Table 4: Errors of the NLCEQ solution with degree-D complete Chebyshev
polynomials for the RBC model with a constraint on investment

D Approx Error for c Approx Error for � Global Error on D1 Global Error on D2

bE
L

1 bE
L

1 bE
L

1 bE
L

1
E

L

1
E

L

1
E

L

1
E

L

1

10 5.2(�3) 1.7(�3) 2.5(�2) 5.4(�3) 2.6(�2) 3.1(�3) 2.1(�2) 2.5(�3)

20 2.6(�3) 5.0(�4) 1.5(�2) 1.4(�3) 1.3(�2) 7.9(�4) 5.3(�3) 6.9(�4)

50 1.6(�3) 8.5(�5) 9.8(�3) 2.7(�4) 4.5(�3) 1.4(�4) 4.9(�4) 9.7(�5)

100 8.2(�4) 2.1(�5) 2.2(�3) 6.9(�5) 2.0(�3) 1.2(�4) 1.9(�3) 1.8(�4)

Note: ⇣(�j) means ⇣ ⇥ 10�j.

4.3 Numerical Results

In the transformation step of the NLCEQ method, we choose T = 100 and

the problem becomes

eV (k
0

, A
0

) = max
c

T�1

P

t=0

�tU (c
t

) + �T

eV
T

(k
T

, A
T

) , (27)

subject to (22)-(24) with a deterministic process of A
t

: ln(A
t+1

) = ⇢ ln(A
t

).

The terminal value function eV
T

(k,A) is given as U(0.7Ak↵)/(1 � �). In

the approximation step of NLCEQ, we use the tensor grid of Chebyshev

nodes (D + 1 nodes in each dimension) and degree-D complete Chebyshev

polynomials.

Table 4 reports approximation errors and global errors of the solution of

NLCEQ over two sets of points, D
1

and D
2

, for various degrees D. We see

that higher degree approximation achieves higher accuracy, and the weighted

errors on D
2

are a bit smaller than those on D
1

. Because of the kinks caused

by the frequently binding constraint on investment, a polynomial approxi-

mation is not very good at approximating functions with kinks until a high

degree approximation (this is reflected by the approximation errors of La-

grange multiplier � in the table, moreover most of global errors in the table

come from the investment constraint error E
3

because of the kinks on the

investment function), so NLCEQ achieves an accuracy with O(10�3) in L

1
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or O(10�4) in L

1 until the degree-50 approximation.18

However, the order-1 perturbation (log-linearization) method has an L

1

global error up to 0.73 and an L

1 global error up to 0.17 on the domain

[0.7k
ss

, 1.3k
ss

]⇥ [0.7, 1.3], although its L1 error is 0.02 and L

1 error is 0.003

for the model without the investment constraint (24). The order-2 pertur-

bation method does not improve the accuracy as its L1 error is 0.8 and L

1

error is 0.18., although it increases about two order accuracy for the model

without the investment constraint (24). Therefore, this shows that NLCEQ

is much more accurate, about two or three orders of magnitude higher, than

the order-1 and order-2 perturbation methods for this problem with the oc-

casionally binding constraint.

The comparison between NLCEQ and log-linearization is also shown in

Figure 1, which shows the global errors of their solutions when A = 0.7, 1, and

1.3. The NLCEQ solution is the one with degree-100 complete Chebyshev

polynomial approximation. Figure 1 shows clearly that NLCEQ is much

more accurate than log-linearization globally, particularly when the state is

not close to the steady state.

We now try piecewise bilinear interpolation as the approximation method,

because piecewise bilinear interpolation can deal with the kinks better than

polynomials. For the approximation nodes, we choose the tensor grid of n

equally spaced capital in [0.5k
ss

, 1.5k
ss

] and n equally spaced productivity

in [0.5, 1.5]. Table 5 lists approximation errors and global errors from NL-

CEQ with piecewise bilinear interpolation, and we found that the piecewise

bilinear interpolation has smaller, about one order of magnitude, errors than

the complete Chebyshev polynomials when they use the same number of

approximation nodes.

Table 6 shows global errors for various standard deviation � (approxi-

mation errors are independent on �). We see that a smaller � has smaller

18We also tried the case with � = 0, and found that its NLCEQ solution has a bit
smaller errors than those in Table 4.
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Figure 1: Errors of the solutions from NLCEQ or log-linearization for the
RBC model with a constraint on investment

Table 5: Errors of the NLCEQ solution with piecewise bilinear interpolation
for the RBC model with a constraint on investment

n Approx Error for c Approx Error for � Global Error on D1 Global Error on D2

bE
L

1 bE
L

1 bE
L

1 bE
L

1
E

L

1
E

L

1
E

L

1
E

L

1

21 3.7(�3) 1.1(�4) 4.0(�2) 3.6(�3) 5.8(�3) 7.6(�4) 1.7(�3) 3.1(�4)

51 1.9(�3) 2.6(�5) 7.3(�3) 5.9(�4) 8.7(�4) 1.7(�4) 4.5(�4) 1.1(�4)

101 7.5(�4) 4.1(�6) 4.7(�3) 1.4(�4) 3.6(�4) 1.1(�4) 2.5(�4) 9.8(�5)

Note: ⇣(�j) means ⇣ ⇥ 10�j.
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Table 6: Errors of the NLCEQ solution with piecewise bilinear interpolation
for the RBC model with a constraint on investment and various standard
deviations

� n Global Error on D1 Global Error on D2

E

L

1
E

L

1
E

L

1
E

L

1

0.001 21 7.5(�3) 8.4(�4) 2.5(�4) 3.5(�5)

51 9.3(�4) 1.2(�4) 4.5(�5) 8.2(�6)

101 2.9(�4) 3.1(�5) 3.0(�6) 6.8(�7)

0.02 21 5.6(�3) 7.9(�4) 2.0(�3) 4.6(�4)

51 1.3(�3) 2.8(�4) 7.9(�4) 2.4(�4)

101 6.6(�4) 2.4(�4) 4.2(�4) 2.3(�4)

0.05 21 8.1(�3) 1.8(�3) 9.4(�3) 1.5(�3)

51 2.9(�3) 1.4(�3) 5.9(�3) 1.4(�3)

101 2.8(�3) 1.4(�3) 4.0(�3) 1.3(�3)

Note: ⇣(�j) means ⇣ ⇥ 10�j.

errors and it has about four-digit accuracy for the smallest � = 0.001. When

� = 0.05, the errors are up to O(10�3) and there are almost no improvement

by increasing n from 51 to 101. Moreover, when � is up to 0.05, the global

errors on the ergodic set D
2

are bigger than those on D1, because the domain

containing D1, [0.7k
ss

, 1.3k
ss

] ⇥ [0.7, 1.3], is not large enough to contain D
2

for large �.

However, the errors for large � can be decreased by changing the deter-

ministic transition law of A
t

to ln(A
t+1

) = ⇢ ln(A
t

) � 0.5�2. Table 7 shows

errors for � = 0.05 using the new deterministic transition law of A
t

and piece-

wise bilinear interpolation. We see that the errors are smaller than those in 6

from ln(A
t+1

) = ⇢ ln(A
t

). Moreover, a larger n clearly improves the accuracy

of the solution.

Since global errors cannot represent true errors compared with the true

solution, we implement shape-preserving value function iteration with ratio-

nal spline interpolation (Cai and Judd 2012) to derive the “true” solution

and then check the “true” errors. We follow Tauchen (1986) to approximate

the process of ln(A
t

) with a Markov chain of 101 equally spaced values in
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Table 7: Errors of the NLCEQ solution using ln(A
t+1

) = ⇢ ln(A
t

)� 0.5�2

� n Global Error on D1 Global Error on D2

E

L

1
E

L

1
E

L

1
E

L

1

0.05 21 5.8(�3) 9.5(�4) 7.5(�3) 7.8(�4)

51 1.8(�3) 5.1(�4) 4.9(�3) 4.6(�4)

101 1.7(�3) 4.7(�4) 3.5(�3) 3.9(�4)

Note: ⇣(�j) means ⇣ ⇥ 10�j.

Table 8: “True” relative errors of the NLCEQ solution for the RBC model
with a constraint on investment

n Piecewise Bilinear Interp. Complete Chebyshev Poly.

error in L

1 error in L

1 error in L

1 error in L

1

21 6.0(�3) 3.2(�4) 5.2(�3) 1.3(�3)

51 3.2(�3) 1.5(�4) 2.7(�3) 2.5(�4)

101 4.2(�4) 1.1(�5) 1.3(�3) 1.5(�4)

Note: ⇣(�j) means ⇣ ⇥ 10�j.

[0.5, 1.5], and use 101 equally spaced nodes for capital in [0.5k
ss

, 1.5k
ss

] as

the approximation nodes for the rational spline interpolation for each dis-

crete value of the Markov process ln(A
t

). The value function iteration stops

while the relative change of two consecutive value functions is less than 10�6.

With these converged “true” solution, Table 8 reports “true” relative errors

for consumption function in the domain of k and A, [0.7k
ss

, 1.3k
ss

]⇥[0.7, 1.3],

from NLCEQ with degree-(n� 1) complete Chebyshev polynomials or piece-

wise bilinear interpolation with n ⇥ n approximation nodes. We see that

these errors are close to those global errors in Table 4 or Table 6. We also

see that the “true” relative errors from piecewise bilinear interpolation are

smaller than those from complete Chebyshev polynomials when n = 101.

Figure 2 shows the optimal investment policy functions from NLCEQ

with piecewise bilinear interpolation (n = 101). We see that when technology

A
t

> 1 and capital k
t

> 0.7k
ss

, the investment is always bigger than its lower

bound. But if A
t

is small then the investment is binding at the lower bound.
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Figure 2: Investment policy function for the RBC model with a constraint
on investment

5 Application to a dynamic stochastic model

of food and clean energy

In previous section we solved problems with occasionally binding constraints

and their steady state in the center of their state space. However, in some

problems like the one shown below, the steady state is on the boundary of the

feasible space of states, and is approached from only one side. Moreover, we

know that usually the solution at the initial states is the most important, but

the initial states could be far away from the steady state. For these problems,

log-linearization is not reliable because it can only give good solutions around

the steady state. This section applies NLCEQ to solve such a low-dimensional

problem, where there are no reachable steady states, its initial states stay in

a corner region, and there are inequality constraints that occasionally bind.
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5.1 Model Setup

In this example we apply NLCEQ method to solve a stochastic version of

a dynamic model of food and clean energy introduced by Chakravorty et

al. (2008). This stylized model serves as a vehicle for developing and solv-

ing more complex models aimed at understanding complicated real world

economic problems related to biofuels and global land use.19

We assume a single-country economy with two primary factors, land and

fossil fuels (e.g., oil). The economy has a fixed endowment of land, L, which

can be used to produce food or biofuels. Let L
t,f

and L
t,b

be the amounts

of land dedicated to produce food and biofuels crops at time t, respectively.

The residual land, L� L
t,f

� L
t,b

, is unused. Total land constraint is:

L
t,f

+ L
t,b

 L (28)

The economy has also some stock of extractable fossil fuel resource (e.g.,

oil), S, with the initial stock S
0

. At period t the economy extracts s
t

units

of fossil fuel, so we have:

S
t+1

= S
t

� s
t

. (29)

Production of food employs only land resource. The production function

for food crops is linear in the amount of land used. There is one stochastic

tipping event: once it happens, it adversely a↵ects the production of food

crops at a level J < 1, and this damage is irreversible for any later periods.

Let the food production per unit of land be ✓
t,f

before the tipping event

happens (we assume ✓
t,f

= 1 for simplicity). Thus, the production function

19 For direct model extension see Chakravorty et al. (2012). Steinbuks and Hertel

(2014) present a closely related computable partial equilibrium model of land use at the

global scale, which incorporates additional sectors and non-homothetic preferences. While

all these works assume perfect foresight, Cai el al. (2014) incorporate uncertainty in global

land use decision models.

34



for food crops is

y
t,f

⌘ (1� J
t

)✓
t,f

L
t,f

, (30)

where J
t

denotes the stochastic damage level: J
t

= 0 if the tipping event has

not happened before time t, otherwise J
t

= J . We assume that the stochastic

process J
t

is a Markov chain with the transition probability matrix

P =

 

1� p
21

0

p
21

1

!

, (31)

where p
21

is the probability that the tipping event happens in one year,

and the (2, 2) element of P is 1 because of the irreversibility of the tipping

damage.20

Production of energy employs both fossil fuels and biofuels, and it is a

constant elasticity of substitution (CES) function:21

y
t,e

⌘ A
h

↵ (✓
t,b

L
t,b

)� + (1� ↵) (s
t

)�
i

1

�

, (32)

where A is the technology parameter of energy production, ✓
t,b

is the return

of biofuels crops per unit of land (we assume ✓
t,b

= 1 for simplicity), ↵ is

the cost share of biofuels’ feedstocks and � is the CES function parameter

proportional to the elasticity of substitution of oil for biofuels.

Let M be the mass of pollution (e.g., carbon concentration), with the

20 Cai et al. (2015a) assume a more general tipping process with irreversible damages

on production. We use this simpler version for illustrating the application of NLCEQ

without loss of generality.

21Chakravorty et al. (2008) assume that fossil fuels and biofuels are perfect substitutes.
Our modification of the original model makes it more realistic (as biofuels substitute
imperfectly for petroleum in final liquid fuel demand), and avoids numerical problems
caused by bang-bang solutions of Chakravorty et al. (2008).
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initial stock M
0

. The law of accumulation of pollution is:

M
t+1

= µs
t

+ (1� �)M
t

, (33)

where µ is the amount of pollution produced from combustion of one unit

of fossil fuel (relative to biofuels), and � is the natural rate of pollution

absorption by the earth atmosphere and oceans.

The non-land production costs of food and biofuels are linear:

c
t,j

⌘  
j

L
t,j

, (34)

where  
j

is the food or biofuels cost per unit of land, for j 2 {f, b}. The

fossil fuel extraction cost is:

c
t,e

⌘  
1e

s
t

(S
t

)� 2e , (35)

where  
1e

and  
2e

are two positive parameters, so that oil extraction cost

increases with depletion of the oil stock S
t

.22 Following Cai et al. (2014)

we assume that at each time t there is an exogenous endowment of other

primary resources (e.g., labor, physical and human capital, and materials),

⇧
t

. A part of this endowment is used in food and energy sectors for oil

extraction and refining, and production of food and biofuels. The remaining

amount of other primary resources is converted to other goods, which are

consumed in final demand. The production of other goods is linear in the

remaining amount of other primary resources with transformation coe�cient

✓
t,o

(for simplicity we assume ✓
t,o

= 1):

y
t,o

⌘ ✓
t,o

(⇧
t

� c
t,f

� c
t,b

� c
t,e

) . (36)

22This is another modification of Chakravorty et al. (2008), who assume linear extrac-
tion costs for simplicity. Our cost specification is more commonly used in the environmen-
tal economics literature (see e.g., Nordhaus and Boyer 2003).
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We assume a utility function, which is additively separable in food, energy,

and other goods (positively), as well as pollution stock (negatively):

u (y
t,f

, y
t,e

, y
t,o

,M
t

) =
(y

t,f

)
1� 1

�

f

1� 1

�

f

+B
e

(y
t,e

)1�
1

�

e

1� 1

�

e

+B
o

(y
t,o

)1�
1

�

o

1� 1

�

o

�B
M

M⌘

t

, (37)

where �
f

, �
e

, �
o

, B
e

, B
o

, B
M

, and ⌘ are positive parameters.23 In addi-

tion, following Chakravorty et al. (2008) we assume that pollution stock

is capped at certain threshold by an international agreement, which is not

necessarily consistent with unconstrained country pollution optimum. That

is, we assume that M
t

 M for all t with a given upper bound M .

The objective of the social planner is to maximize the expected sum of

the discounted utility with a discount factor �. That is, the social planner’s

problem is

V (S
0

,M
0

, J
0

) = max
L

t,f

,L

t,b

,s

t

�0

E
( 1
X

t=0

�t [u (y
t,f

, y
t,e

, y
t,o

,M
t

)]

)

(38)

subject to (28), (29), (33), and M
t

 M , with three nonnegative control

variables at each time t: land dedicated to food crops L
t,f

, land dedicated to

biofuels L
t,b

, and extracted fossil fuels s
t

.

There are two endogenous state variables: fossil fuel stock, S
t

, governed

by equation (29), and accumulated pollution, M
t

, governed by equation (33),

and one exogenous discrete state variable: damage level, J
t

. Note that the

steady endogenous states imply zero extraction of fossil fuels and zero pol-

lution from (29) and (33), i.e., s
t

= 0 and M
t

= 0. This means that the

steady state will not be reached in the optimal path in a finite horizon as M
t

is always bigger than 0 in our model (although M
t

converges to 0 as t goes

23This formulation is di↵erent from Chakravorty et. al. (2008), who do not incorporate
disutility from pollution in the utility function, but it is broadly consistent with the envi-
ronmental economics and growth literature, see e.g., Andreoni and Levinson (2001), and
Xepapadeas (2005).
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to infinite).

We set the total amount of land, L, equal to 1. We also assume that

the tipping event has not happened at the initial time (i.e., J
0

= 0). In our

example, we let J = 0.1, p
21

= 0.0034, � = 0.95, ↵ = 0.5, � = 0.5, � = 0.001,

µ = 0.25, �
f

= �
e

= �
o

= 0.5, B
e

= B
o

= 0.5, B
M

= 1, ⌘ = 4, ⇧
t

⌘ 1, A = 1,

 
1e

= 0.4,  
2e

= 1,  
f

= 0.3,  
b

= 0.5, and M = 1.06.

5.2 Numerical Results

Since S
t

is always non-increasing over time and M
t

has an upper bound

M = 1.06, we set the approximation domain for the value/policy functions

as S
0

2 [0.01, 1] and M
0

2 [1, 1.06], for each J
0

2

�

0, J
 

. We set the

length of time path equal to T = 200 periods for the dynamic model of food

and clean energy in the deterministic model transformed from (38) in the

transformation step of NLCEQ (Algorithm 1). In the transformation step, if

J
0

= 0, then we change J
t

to its unconditional expectation at time t, p
t,1,2

J ,

where p
t,1,2

= 1 � (1 � p
21

)t (the second element of the vector P t(1, 0)>

with P given by (31)) is the probability that the tipping event happens at a

time not later than t; if J
0

= J , then it has been a deterministic model as

J
t

will always be J because of the irreversibility of the tipping damage. We

assume the terminal value function to be u (y
T,f

, y
T,e

, y
T,o

,M
T

) /(1��) where

(y
T,f

, y
T,e

, y
T,o

) are given by (30), (32), and (36) with terminal extraction

s
T

= 0.01X
T

.

For this specific problem, we can compute the true value/policy functions

of the model (38) in order to measure the accuracy of solutions from NLCEQ,

so we do not need to test the accuracy using its Euler equations errors like

what we did for the RBC model (11). When J
0

= 0, the problem can be

solved as an optimal control problem by a large-scale optimization solver in
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Table 9: Errors of Policy Functions from NLCEQ for the Model of Food and
Clean Energy

D Error for L
f

Error for s
L

1
L

1

L

1
L

1

4 9.4(�3) 1.2(�3) 1.8(�3) 2.8(�4)
6 3.7(�3) 5.8(�4) 1.1(�3) 1.6(�4)
8 2.2(�3) 3.0(�4) 7.8(�4) 9.5(�5)
10 2.1(�3) 1.8(�4) 6.0(�4) 6.1(�5)
20 8.4(�4) 4.8(�5) 2.6(�4) 1.9(�5)

Note: ⇣(�j) means ⇣ ⇥ 10�j.

the following form:

V
J

0

=0

(S
0

,M
0

) = max
L

t,f

,L

t,b

,s

t

�0

(

T

X

t=0

�t

"

2

X

j=1

p
t,1,j

u (y
t,f,j

, y
t,e

, y
t,o

,M
t

)

#)

(39)

subject to (28), (29), (33), and M
t

 M , where p
t,1,1

= 1 � p
t,1,2

, y
t,f,1

=

✓
t,f

L
t,f

, and y
t,f,2

= (1� J)✓
t,f

L
t,f

. When J
0

= J , the problem is determin-

istic:

V
J

0

=J

(S
0

,M
0

) = max
L

t,f

,L

t,b

,s

t

�0

(

T

X

t=0

�t [u (y
t,f,2

, y
t,e

, y
t,o

,M
t

)]

)

(40)

subject to (28), (29), (33), and M
t

 M .

We use the initial-time solutions for the control variables at approxima-

tion nodes of S
0

and M
0

to construct the optimal policy functions for each

J
0

2

�

0, J
 

. n the NLCEQ method, we use the tensor grid of Chebyshev

nodes (D + 1 nodes in each dimension) over the domain of the continuous

state variables, [0.01, 1] ⇥ [1, 1.06], in the optimization step. We apply the

degree-D complete Chebyshev polynomials in the approximation step, for

each J
0

2

�

0, J
 

.

Table 9 reports absolute errors24 of the policy functions computed by

24We do not use relative errors because the solution of the fossil fuel extraction s could
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Figure 3: Pre-tipping State Paths for the Model of Food and Clean Energy

NLCEQ over the approximation domain and all discrete state values for

various degreesD. We see that NLCEQ gives O(10�4) accuracy for the policy

functions, after we use the degree-20 polynomial approximation. Figure 3

shows the pre-tipping paths of stock of fossil fuel X
t

and pollution M
t

, and

we see that our NLCEQ solutions are very close to true solutions, and M
t

hits its upper bound after 40 periods and sticks on the bound for more than

100 periods.

6 Application to a New Keynesian Model with

Zero Lower Bound

In this section, we apply NLCEQ for competitive equilibrium (Algorithm 2)

to solving a New Keynesian model with zero lower bound (ZLB). We use

the New Keynesian model in Guerrieri and Iacoviello (2015), a variant of

the new Keynesian model with ZLB that is used in Fernández-Villaverde et

al. (2015) and Maliar and Maliar (2015). The values of parameters are also

be nearly 0.
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chosen from Guerrieri and Iacoviello (2015).

6.1 Model Overview

The model consists of a representative household, a government, a final-good

firm, and intermediate firms. At each time t the government issues bonds

that expire at t + 1 and the nominal interest rate for the bonds is r
t

(the

time unit is a quarter). A representative household consumes c
t

with a price

p
t

from the final-good firm, buys newly issued bonds with a total face value

b
t

from the government, sells the expired bonds b
t�1

, earns wages from labor

supply `
t

with a wage rate w
t

, and receives a lump-sum transfer T
t

from the

government and profit ⇧
t

from all firms. The budget constraint is as follows:

p
t

c
t

+
b
t

1 + r
t

= w
t

`
t

+ b
t�1

+ T
t

+ ⇧
t

(41)

The representative household chooses consumption c
t

, labor supply `
t

,

and government bonds b
t

to maximize

max
c

t

,`

t

,b

t

E
( 1
X

t=0

 

t

Y

i=0

�
i

!

U(c
t

, `
t

)

)

(42)

subject to the budget constraint (41), where

U(c, `) = ln(c)�
`1+⌘

1 + ⌘

with ⌘ = 1. The discount factor �
t

is a stochastic process following

ln(�
t+1

) = (1� ⇢) ln(�⇤) + ⇢ ln(�
t

) + �✏
t+1

(43)

where ✏
t

⇠ i.i.d.N (0, 1), �⇤ = 0.994, ⇢ = 0.8, and � = 0.005. The first-order
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conditions of the household problem imply

1 = E
t

⇢

�
t+1

1 + r
t

⇡
t+1

c
t

c
t+1

�

(44)

and

w
t

= p
t

c
t

`⌘
t

(45)

where ⇡
t

⌘ p
t

/p
t�1

is the gross inflation rate.

The final-good firm purchases intermediate goods from intermediate firms

to produce a final good y
t

and sell it at a price p
t

. The intermediate firms are

assumed to have Calvo-type prices: a fraction 1�✓ of the firms have optimal

prices and the remaining fraction ✓ of the firms keep the same price as in the

previous period. Here the Calvo parameter ✓ is set as 0.9. In Appendix B

we describe the detailed model specification for the final- and intermediate-

goods firms and derive the following equilibrium conditions:

1 =
1

�
t,1

�

y
t

`⌘
t

+ ✓E
t

�

�
t+1

⇡↵

t+1

�
t+1,1

 �

(46)

1 =
1

�
t,2

✓

y
t

c
t

+ ✓E
t

�

�
t+1

⇡↵�1

t+1

�
t+1,2

 

◆

(47)

q
t

=
↵�

t,1

(↵� 1)�
t,2

=

✓

1� ✓⇡↵�1

t

1� ✓

◆

1

1�↵

(48)

v
t+1

=
`
t

y
t

= (1� ✓)q�↵

t

+ ✓⇡↵

t

v
t

(49)

where ↵ = 6, for any time t � 0.

Let ⇡⇤, r⇤, and y⇤ be the steady-state gross level of inflation, the steady-

state nominal interest rate, and the steady-state output, respectively. Let

the government spending g
t

be always equal to s
g

y
t

with s
g

= 0.2. From the

market clearing condition y
t

= c
t

+ g
t

, we have

c
t

= (1� s
g

)y
t

. (50)
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Following the Taylor rule (Taylor 1993), we have the nominal interest rate as

r
t

= max(z
t

, 0) (51)

with

z
t

= (1 + r⇤)
⇣ ⇡

t

⇡⇤

⌘

�

⇡

✓

y
t

y⇤

◆

�

y

� 1 (52)

where we choose �
⇡

= 2.5, �
y

= 0.25, and ⇡⇤ = 1.005. We have r⇤ = ⇡⇤/�⇤
�1

from (44), and the formula for y⇤ is given in Appendix C. Equation (51)

implies that the actual policy rate r
t

must be nonnegative, and this zero

lower bound will be binding when the notional policy rate z
t

is smaller than

0.

We now have one endogenous state variable v
t

and one exogenous state

variable �
t

, the system of equilibrium equations (44) and (46)-(52), and the

exogenous process (43). We apply NLCEQ (Algorithm 2) to compute the

policy functions for (c
t

,�
t,1

,�
t,2

, ⇡
t

, q
t

, v
t

, `
t

, y
t

, r
t

, z
t

), and with the NLCEQ

solution it follows that the consumption price is computed by p
t

= ⇡
t

p
t�1

and then the wage is computed by (45).

6.2 Numerical Results

In NLCEQ (Algorithm 2), we transform the stochastic process (43) to be

deterministic as ln(�
t+1

) = ⇢ ln(�⇤) + (1� ⇢) ln(�
t

), and then transform the

system of equilibrium equations (44) and (46)-(52) to be deterministic by

canceling their corresponding expectation operator, and choose T = 200 in

the transformed system (5).

In the approximation step of Algorithm 2, since the control variables

(c
t

, `
t

, r
t

, q
t

, z
t

, ⇡
t

) can be simply substituted, we only need to approximate

three control variables (�
t,1

,�
t,2

, y
t

) over two state variables (v
t

, �
t

). We use

the relative L

1 norm (relative to the steady state values given in Appendix

C, (v⇤,�⇤
1

,�⇤
2

, y⇤), respectively) in the objective of (5). We use the tensor grid
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Table 10: Errors of the NLCEQ solution with degree-D complete Chebyshev
polynomials for the New Keynesian DSGE model with ZLB

D = 4 D = 6 D = 8 D = 10
L

1 Global Error 4.4(�3) 3.1(�3) 2.2(�3) 1.8(�3)
L

1 Global Error 8.1(�4) 6.0(�4) 5.6(�4) 4.6(�4)
Note: ⇣(�j) means ⇣ ⇥ 10�j.

of Chebyshev nodes (D+1 nodes in each dimension) and degree-D complete

Chebyshev polynomials to approximate the policy functions. We want to

get a solution over the state space [1, 1.04] ⇥ [0.96, 1.03], a slightly wider

domain than the one used in Guerrieri and Iacoviello (2015), so it will have a

higher chance of a binding ZLB. Thus we choose the approximation domain

of (v, �) as [1, 1.045] ⇥ [0.936, 1.056] so that next simulated states transited

from current states in [1, 1.04]⇥ [0.96, 1.03] using (49) and (43) will be inside

the approximation domain.

Table 10 reports unit-free errors of the NLCEQ solution for various de-

grees D. The errors are computed on the domain [1, 1.04]⇥ [0.96, 1.03] . The

global errors are defined in a similar way in Subsection 3.1, while we need to

estimate the unit-free errors for the equations (44), (46), and (47), where we

use the 15-point Gauss-Hermite quadrature rule to estimate the integrations.

We see that they achieve O(10�3) errors in L

1 or O(10�4) errors in L

1, and

a higher degree approximation improves the accuracy.

We also solve the model with the order-1 (linearization) and order-2 per-

turbation methods. The order-1 perturbation gives an error 0.011 in L

1 and

0.0014 in L

1. The order-2 perturbation does not improve the accuracy, its

error is 0.012 in L

1 and 0.0012 in L

1. NLCEQ is almost one digit more

accurate than the perturbation methods.

The comparison between NLCEQ and the linearization method is also

shown in Figure 4, which shows the global errors of NLCEQ with degree-10

complete Chebyshev polynomials and of the order-1 perturbation method

when � = 0.96, 0.994, 1.03. We see that NLCEQ is always more accurate
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Figure 4: Errors of the NLCEQ solution for the New Keynesian DSGE model
with ZLB

than the linearization method. The errors are smaller when � is closer to

steady �⇤ = 0.994. When � is the largest (i.e., � = 1.03), the errors are the

largest because a higher � implies a higher chance of a binding ZLB (about

24% state points in [1, 1.04]⇥ [0.96, 1.03] have a binding ZLB).

Figure 5 shows impulse responses of interest rate r
t

, inflation ⇡
t

(the

figure shows the net inflation rate in percent, i.e., 100(⇡
t

� 1)%), and output

y
t

(the figure shows deviation of output from the steady state in percent,

i.e., 100(y
t

/y
ss

� 1)%) to a shock of discount factor �
1

(with v
1

= v
ss

). The

left panel of the figure shows responses to a shock that brings �
1

up to 1.03,

and the right panel shows responses to a shock that brings �
1

down to 0.96.

We see that the interest rate hits the ZLB in the first four periods in the

left panel, and all three responses (r
t

, ⇡
t

, y
t

) are decreasing functions of � (�
t

decreases along time t in the left panel, and �
t

increases along time t in the

right panel), and they are almost steady after 20 periods (i.e., 5 years).

We also show that NLCEQ (Algorithm 2) can solve deterministic com-
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Figure 5: Impulse responses to a shock of discount factor

Table 11: Errors of the NLCEQ solution with degree-D complete Chebyshev
polynomials for the New Keynesian DSGE model with ZLB and � = 0

D = 10 D = 20 D = 50 D = 100
L

1 Global Error 1.3(�3) 7.3(�4) 5.2(�4) 1.7(�4)
L

1 Global Error 2.3(�4) 8.5(�5) 4.6(�5) 1.3(�5)
Note: ⇣(�j) means ⇣ ⇥ 10�j.

petitive equilibrium problems very accurately. Table 11 lists global errors in

L

1 norm over [1, 1.04] ⇥ [0.96, 1.03] for the New Keynesian DSGE problem

with ZLB and � = 0. We choose a large T = 300 and a higher degree approx-

imation in order to get a higher accuracy. We see that NLCEQ reaches about

4-digit accuracy in L

1 for the optimal policy functions to the deterministic

competitive equilibrium problem.

7 Conclusion

We have shown that NLCEQ can be applied to solve dynamic stochastic

problems with acceptable accuracy when we combine modern approxima-

tion optimization methods with parallel computing architectures. Examples
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include high-dimensional optimal stochastic growth problems up to four hun-

dred state variables and three problems with occasionally binding constraints,

including a dynamic stochastic model of food and clean energy, and a New

Keynesian DSGE model with zero lower bound. This approach greatly ex-

pands the range of problems that can be solved well globally, and clearly

dominates any form of linearization.
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Appendix A—Approximation

An approximation scheme approximates a function F (x) with F̂ (x;b) =
P

n

j=0

b
j

�
j

(x) for some vector of parameters b. A spectral method uses glob-

ally nonzero basis functions �
j

(x). Examples of spectral methods include

ordinary or Chebyshev polynomial approximation. In contrast, a finite ele-

ment method uses local basis functions where for each j the basis function

�
j

(x) is zero except on a small part of the approximation domain. Exam-

ples of finite element methods include piecewise linear interpolation, cubic

splines, and B-splines. See Cai and Judd (2014, 2015) and Judd (1998) for

more details.

Chebyshev Polynomial Approximation

Chebyshev polynomials on [�1, 1] are defined as �
j

(z) = cos(j cos�1(z)).

The Chebyshev polynomials on a general interval [x
min

, x
max

] are defined as

�
j

((2x�x
min

�x
max

)/(x
max

�x
min

)) for j � 0, and are orthogonal under the

weighted inner product hf, gi =
´

x

max

x

min

f(x)g(x)w(x)dx with the weighting

function

w(x) =

 

1�

✓

2x� x
min

� x
max

x
max

� x
min

◆

2

!�1/2

.

A degree D Chebyshev polynomial approximation for V (x) on [x
min

, x
max

] is

V̂ (x;b) =
D

X

j=0

b
j

�
j

✓

2x� x
min

� x
max

x
max

� x
min

◆

, (53)

where b
j

are the Chebyshev coe�cients.

The canonical Chebyshev nodes on [�1, 1] are z
i

= � cos ((2i� 1)⇡/(2m))

for i = 1, . . . ,m, and the corresponding Chebyshev nodes adapted for the

general interval [x
min

, x
max

] are x
i

= (z
i

+1)(x
max

�x
min

)/2+x
min

. If we have

Lagrange data {(x
i

, v
i

) : i = 1, . . . ,m} with v
i

= V (x
i

), then the coe�cients
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b
j

in (53) are

b
j

=
2

m

m

X

i=1

v
i

�
j

(z
i

), j = 1, . . . , D, (54)

and b
0

=
P

m

i=1

v
i

/m. The method is called the Chebyshev regression algo-

rithm in Judd (1998).

Multidimensional Complete Chebyshev Approximation

In a d-dimensional approximation problem, the domain of the approximation

function will be

{x = (x
1

, . . . , x
d

) : x
min,i

 x
i

 x
max,i

, i = 1, . . . d} ,

Let x
min

= (x
min,1

, . . . , x
min,d

) and x
max

= (x
max,1

, . . . , x
max,d

). We let [x
min

,x
max

]

denote the domain. Let ↵ = (↵
1

, . . . ,↵
d

) be a vector of nonnegative integers.

Let �
↵

(z) denote the product
Q

d

i=1

�
↵

i

(z
i

) for z = (z
1

, . . . , z
d

) 2 [�1, 1]d. Let

Z(x) =

✓

2x
1

� x
min,1

� x
max,1

x
max,1

� x
min,1

, . . . ,
2x

d

� x
min,d

� x
max,d

x
max,d

� x
min,d

◆

for any x = (x
1

, . . . , x
d

) 2 [x
min

,x
max

]. With this notation, the degree-D

complete Chebyshev approximation for V (x) is

V̂ (x;b) =
X

↵�0, |↵|D

b
↵

�
↵

(Z(x)) ,

where |↵| =
P

D

i=1

↵
i

. This is a degree D polynomial, and has
�

d+D

D

�

terms.
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Appendix B—Equilibrium Conditions in the

New Keynesian DSGE Model

The final-good firm buys intermediate goods y
i,t

from intermediate firms to

produce a final good y
t

with the following production function

y
t

=

✓ˆ
1

0

y
↵�1

↵

i,t

di

◆

↵

↵�1

(55)

then sell y
t

at a price p
t

. Let p
i,t

be prices of y
i,t

, then the final-good firm

chooses y
i,t

to maximize its profit:

max
y

i,t

p
t

y
t

�

ˆ
1

0

p
i,t

y
i,t

di.

Its first-order condition implies

y
i,t

= y
t

✓

p
i,t

p
t

◆�↵

. (56)

The intermediate firms rent labor supply `
i,t

from the household with a

wage rate w
t

and produce y
i,t

with a simple production function

y
i,t

= `
i,t

, (57)

and sell y
i,t

at a price p
i,t

to the final-good firm. The intermediate firms are

assumed to have Calvo-type prices: a fraction 1�✓ of the firms have optimal

prices and the remaining fraction ✓ of the firms keep the same price as in the

previous period.

A re-optimizing intermediate firm i 2 [0, 1] chooses its price p
i,t

to maxi-

mize the current value of profit over the time when the optimal p
i,t

remains
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e↵ective:

max
p

i,t

E
t

( 1
X

j=0

 

j

Y

k=0

�
t+k

!

�
t+j

✓j (p
i,t

y
i,t+j

� w
t+j

`
i,t+j

)

)

(58)

subject to the constraints y
i,t+j

= `
i,t+j

from (57) and

y
i,t+j

= y
t+j

✓

p
i,t

p
t+j

◆�↵

from (56) by letting p
i,t+j

= p
i,t

. Here �
t

is the Lagrange multiplier of

the budget constraint (41). From the first-oder conditions of the household

problem (42), �
t

satisfies the following equation:

�
t

=
1

p
t

c
t

. (59)

The first-order condition of the re-optimizing intermediate firm problem (58)

implies

E
t

( 1
X

j=0

 

j

Y

k=0

�
t+k

!

�
t+j

✓jp↵
t+j

y
t+j

✓

p
i,t

�

↵

↵� 1
w

t+j

◆

)

= 0 (60)

Let ⇡
t,j

= p
t+j

/p
t

. From (45), (59) and (60), for any re-optimizing firm i we

have
p
i,t

p
t

⌘ q
t

=
↵�

t,1

(↵� 1)�
t,2

(61)

where

�
t,1

⌘ y
t

`⌘
t

+ E
t

( 1
X

j=1

 

j

Y

k=1

�
t+k

!

✓j⇡↵

t,j

y
t+j

`⌘
t+j

)

�
t,2

⌘

y
t

c
t

+ E
t

( 1
X

j=1

 

j

Y

k=1

�
t+k

!

✓j⇡↵�1

t,j

y
t+j

c
t+j

)
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We have the recursive formulas for �
t,1

and �
t,2

:

�
t,1

= y
t

`⌘
t

+ ✓E
t

�

�
t+1

⇡↵

t+1

�
t+1,1

 

(62)

�
t,2

=
y
t

c
t

+ ✓E
t

�

�
t+1

⇡↵�1

t+1

�
t+1,2

 

(63)

From (55) and (56), we have

p
t

=

✓ˆ
1

0

p1�↵

i,t

di

◆

1

1�↵

=

✓

(1� ✓)(q
t

p
t

)1�↵ + ✓

ˆ
1

0

p1�↵

i,t�1

di

◆

1

1�↵

=
�

(1� ✓)(q
t

p
t

)1�↵ + ✓p1�↵

t�1

�

1

1�↵

as

p
t�1

=

✓ˆ
1

0

p1�↵

i,t�1

di

◆

1

1�↵

This follows that

q
t

=

✓

1� ✓⇡↵�1

t

1� ✓

◆

1

1�↵

(64)

From (56), (57) and the following market clearing condition

`
t

=

ˆ
1

0

`
i,t

di,
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we get

v
t+1

⌘ `
t

/y
t

=

ˆ
1

0

✓

p
i,t

p
t

◆�↵

di

= (1� ✓)q�↵

t

+ ✓

ˆ
1

0

✓

p
i,t�1

p
t

◆�↵

di

= (1� ✓)q�↵

t

+ ✓⇡↵

t

ˆ
1

0

✓

p
i,t�1

p
t�1

◆�↵

di

= (1� ✓)q�↵

t

+ ✓⇡↵

t

v
t

(65)

Appendix C—Steady State of the New Key-

nesian DSGE Model

From (63), the steady state of �
t,2

is

�⇤
2

=
1

(1� s
g

)(1� ✓�⇤(⇡⇤)↵�1)

with the given ⇡⇤ = 1.005. From (61) and (64), the steady state of �
t,1

is

�⇤
1

= �⇤
2

q⇤
↵� 1

↵

with

q⇤ =

 

1� ✓ (⇡⇤)↵�1

1� ✓

!

1

1�↵

and from (65) the steady state of v
t

is

v⇤ =
(1� ✓) (q⇤)�↵

1� ✓ (⇡⇤)↵
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Therefore, from v
t

= `
t

/y
t

and (62), we get

y⇤ =

✓

�⇤
1

(1� ✓�⇤ (⇡⇤)↵)

(v⇤)⌘

◆

1

1+⌘
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