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■	 With international market integration and the 
global extent of climate change, future 
agricultural productivity and climate change 
impacts need to be assessed in consistent 
frameworks at the global level.

■ 	 The diversity of global gridded crop models is 
brought together in AgMIP and ISI-MIP model 
intercomparisons to record, evaluate and 
improve uncertainties and skills in global scale 
agricultural modeling.

■ 	 Central to the challenge are significant 
uncertainties not only in future climate change 
projections, but also in current and future 
management patterns and the effectiveness of 
carbon dioxide fertilization.

■ 	 The agricultural sector is strongly interlinked 
with other sectors and biophysical cycles (water, 
carbon). Interactions and co-limitations (e.g. 
bioenergy, irrigation water) need to be 
considered explicitly (and carefully).

■ 	 The diversity of agricultural practices around the 
world as well as the high level of management in 
agricultural systems are a central challenge for 
modeling efforts but also constitute a strong and 
varied basis for climate change adaptation 
measures.
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1. 	Rationale

Agriculture is a diverse economic sector 
that produces food, fibre, material and energy 
commodities. In most regions, agricultural 
productivity is directly dependent on weather 
and climate conditions – more so than any 
other major economic sector. The agriculture 
sector also serves a variety of purposes beyond 
primary production, including nature and resource 
conservation, recreation, greenhouse gas (GHG) 
mitigation and various other so-called ecosystem 
services [Power, 2010]. Agriculture is of central 
importance to society, and climate change is 
a major concern for agricultural systems and 
food security. Due to the rapid expansion of 
international markets, agriculture has become 
an increasingly globalized sector over the course 
of the 20th century. Shocks to production in 
individual countries resulting from policy or climate 
change can affect prices across the globe, as 
demonstrated, for example, during the food price 
spikes in 2008 and 2010 [Blandford et al., 2010; 
Piesse and Thirtle, 2009]. 

Given the importance of the agricultural sector 
on a global scale, it is crucial to assess impacts 
of climate change on agricultural productivity 
with analysis tools that allow sufficient detail to 
account for interregional differences in climate 
and management systems, while retaining global 
coverage to ensure consistency. Biophysical 
crop models, applied globally, can provide 
such consistent multi-scale climate change 
impact assessments. Under the umbrella of 
the Agricultural Model Intercomparison and 
Improvement Project (AgMIP)3 [Rosenzweig et al., 
2014] and as part of the Inter-Sectoral Impact 
Model Intercomparison Project (ISI-MIP)4 
[Warszawski et al., 2014], a coordinated climate 
impact analysis at the global scale was recently 
conducted using a group of seven Global Gridded 
Crop Models (GGCMs).

3	  See http://www.agmip.org
4	  See http://www.isimip.org

Following completion of this fast-track project, 
designed to provide rapid global analysis for the 
Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change (IPCC AR5), the project 
has expanded rapidly. The resulting Global 
Gridded Crop Model Intercomparison (GGCMI), 
which is the flagship project of the new AgMIP 
GRIDded crop modelling initiative (Ag-GRID, see 
http://www.agmip.org/ag-grid/), includes more 
than 20 modelling groups conducting hundreds 
of coordinated historical and projected future 
simulations for model intercomparison and 
improvement and climate impact assessment.

2. 	Biophysical models to 
assess climate change 
impacts on agricultural 
productivity

2.1	 Crops and weather

Agricultural production is directly dependent on 
weather conditions, which – together with soil 
conditions – determine the conditions for plant 
growth. Weather conditions can be managed 
to some extent by, for example, using irrigation 
to compensate for deficient rainfall or timing 
the cropping season to avoid adverse weather 
conditions (dry, hot, cold). Greenhouses provide 
environments in which weather conditions 
can be managed with precision – including 
temperature and radiation inputs – but these are 
only economically feasible at small scales and for 
high-value crops. Weather extremes that cannot 
be managed can lead to severe damage, such as 
from strong winds, hail [e.g. Saa Requejo et al., 
2011] or frost events. 

All agricultural production, including livestock 
production, is dependent on suitable weather 
conditions for plant growth. The central process 
of plant growth is photosynthesis, in which carbon 
dioxide (CO2) is assimilated with sunlight energy 
to form primary sugars. These sugars are the 
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energy source as well as the building blocks for 
all biomass generation. About half of the energy 
stored in the sugars generated by photosynthesis 
is used to satisfy the plant’s own energy demands 
for the formation of complex molecules, growth 
and maintenance. Photosynthesis takes place in 
green leaves and the process is strongly affected 
by ambient temperature, the availability of CO2 
in the air, and availability of sufficient water and 
nutrient supplies in both soil and plant. Along with 
a number of micro-nutrients that are necessary 
in small amounts, nitrogen, phosphorus and 
potassium (in that order) are the most important 
plant nutrients and are often applied to fields as 
artificial fertilizers or manure. 

The same pores that plants use to transpire 
water are also responsible for taking up CO2 
for photosynthesis. When these pores close to 
reduce water transpiration, as happens under dry 
conditions, the uptake of CO2 is also reduced. 

The plants in which photosynthesis is directly 
stimulated under elevated atmospheric CO2 
concentrations are referred to as the C3 plants, 
because the primary product of their photosynthetic 
pathway is a sugar with three carbon atoms. 
Wheat, rice and soybean are the most prominent 
representatives of this group. Other plants have 
developed different mechanisms for fixing CO2, in 
which atmospheric CO2 is intermediately stored 
in oxaloacetic acid, a four-carbon organic acid. 
This group of plants is thus referred to as C4 
plants. C4 plants are less limited by ambient CO2 
concentrations because primary fixation is achieved 
via a more efficient enzyme and the Rubisco enzyme 
is isolated from the ambient air. Some important 
agricultural crops belong to the group of C4 plants, 
such as maize, sugar cane, millet and sorghum.

Plants with C4 carbon fixation have developed 
mechanisms to partially decouple the uptake of 
CO2 from transpiration by concentrating it from 
the atmosphere and passing this bound CO2 on 
to where it is needed for photosynthesis. Due to 
this ability to decouple the CO2 concentration for 
photosynthesis from ambient atmospheric CO2 
concentrations, this group of crops is less sensitive 
to elevated atmospheric CO2 concentrations.

Many other processes relevant to plant growth 
and yields are affected by weather conditions: 
root growth affects access to soil water and 
nutrients; leaf formation affects a plant’s ability to 
absorb sunlight energy; flowering is threatened 
by sterility under high temperatures; frost does 
direct damage to a plant; etc. Indirect effects of 
weather conditions include the mineralization of 
organic matter (e.g. humus or applied manure) 
in soils. Organic matter supplies nutrients to 
plants and is controlled by soil water content 
and temperatures. The spread of plant 
diseases (such as fungi) and insects can also 
be affected by weather and climate conditions 
[Gregory et al., 2009] or by elevated atmospheric 
CO2 concentrations [Dermody et al., 2008; 
Zavala et al., 2008]. 

Many of these processes can be accurately 
modelled as functions of local weather conditions 
(temperatures, precipitation, incident solar energy, 
and sometimes wind speeds and humidity), 
environmental conditions, and management 
conditions. Crop growth models are constructed 
to combine such functional representations and 
are designed with appropriate levels of complexity 
for various applications at a range of spatial 
scales. 

2.2	 Model types

Biophysical crop growth models can be 
categorized into two general types: empirical 
and process-based models. The distinction 
is not always completely clear, since most 
process-based models also include empirical 
relationships; however, purely empirical models, 
such as regression models, are quite distinct. 
The represented processes, data requirements 
(e.g. number of variables, spatial and temporal 
resolutions) and model outputs vary greatly 
among models, depending largely on the research 
questions and applications that motivated the 
model’s development. At global scale, at least 
three types of models can be distinguished, each 
with a broad set of representatives. 
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•	 Gridded versions of site-based process 
models 
These models are based on field-scale models 
that are applied globally by simply running 
the model repeatedly for each locale in the 
(usually gridded) input dataset. These models 
tend to be the most complex with respect to 
processes represented in the model, which 
typically implies high requirements for input 
data. Field-scale models are often strongly 
calibrated for the variety and environmental 
conditions in a single field. This is especially 
important for central empirical processes, 
such as radiation use efficiency [Adam et al., 
2011]. This calibration is generally not 
performed in gridded global applications 
due to a lack of available reference data and 
the computation required. Instead, cultivar 
parameters in gridded process models 
are typically calibrated at a finite set of 
points, either within the researchers’ realm 
of expertise or more broadly, and then key 
parameters are extrapolated globally with 
relatively simple algorithms. For management 
and soil inputs, models are usually driven with 
compiled and/or extrapolated observational 
data [e.g. FAO/IIASA/ISRIC/ISSCAS/JRC, 
2012; Mueller et al., 2012; Potter et al., 2010; 
Sacks et al., 2010]. Examples of this type 
of model that are participating in the Ag-
GRID GGCMI include: pAPSIM; CropSyst 
[Confalonieri et al., 2006; Stöckle et al., 2003]; 
DAYCENT [Stehfest et al., 2007]; pDSSAT 
[Elliott et al., 2014b; Jones et al., 2003]; and 
four models based on EPIC [e.g. Liu et al., 
2007; Xiong et al., 2014]. 

•	 Dynamic global vegetation models 
The second major group consists of GGCMs 
that have been implemented into existing 
land surface schemes (LSMs) or dynamic 
global vegetation models (DGVMs). LSMs 
are used in climate models to simulate the 
energy, water, and sometimes carbon and 
nitrogen exchange between the terrestrial 
biosphere and the atmosphere. Typically, 

crops have been introduced into these models 
to improve the representation of seasonal 
variations in energy and matter exchanges. 
DGVMs are developed to study the response 
of natural ecosystems to climate change 
and the associated implications for carbon 
and water cycles. These models have been 
directly developed for global-scale application 
and so the exchange mechanisms between 
vegetation and atmosphere are generally 
implemented in particular detail (e.g. stomatal 
conductance and photosynthesis). LSM-type 
models require weather data at sub-daily 
resolution (which come from the coupled 
climate model). However, because their focus 
has typically been on global applications with 
relatively low spatial resolutions, these models 
have few data requirements otherwise. Crop 
yields are not the primary focus of these 
models, but have become of increasing 
interest in the applications of models  such 
as those participating in GGCMI: CLM-
Ag [Gueneau et al., 2012]; CLM-Crop 
[Drewniak et al., 2013]; ISAM; JULES-
Crop [Van den Hoof et al., 2011]; LPJmL 
[Bondeau et al., 2007; Müller and Robertson, 
2014; Waha et al., 2012a]; LPJ-GUESS 
[Lindeskog et al., 2013]; and ORCHIDEE 
[Berg et al., 2011].

•	 Large-area crop models or empirical/
process model hybrids 
Finally, the third group consists of crop 
models developed explicitly to simulate 
agricultural production systems at continental 
or global scales. These models typically 
include key process-based representations 
but eschew some of the complexities of 
process models (most notably in terms of 
management and other inputs) in favour of 
calibrated empirical functions. This provides 
more flexibility to represent complex systems 
with hidden variables and provides the kind 
of computational tractability that is often 
required in order to do large-scale calibration 
of historical datasets. Examples of these 
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models include CGMS [de Wit and van 
Diepen, 2008], GLAM [Challinor et al., 2004], 
MCWLA [Tao et al., 2009a; Tao et al., 2009b], 
PEGASUS [Deryng et al., 2011] and PRYSBI-2. 

3.	 Challenges for global- 
scale modelling

3.1	 Global consistency vs. data 	
scarcity

The global scale is especially challenging for 
agricultural assessment because crop models 
depend on having good-quality, high-resolution 
data on weather, soils and farm management that 
are generally not available in much of the world. 
This is true for historical and projected future data 
inputs as well as for reference data against which 
crop models could be tested and improved. The 
fundamental processes implemented in crop 
models have been demonstrated to replicate 
controlled laboratory or field trials. The hypothesis 
in global modelling is that these models are valid 
within the range of parameters necessary for 
global-scale analyses and future projections.

Reference data are available for individual 
sites. Some examples include: the results of 
the free air CO2 enrichment (FACE) experiments 
on the effects of elevated atmospheric CO2 
concentrations [Ainsworth and Long, 2005; 
Leakey et al., 2009]; the eddy-flux tower 
measurements on CO2 and water exchange fluxes 
between the land surface and the atmosphere 
[Baldocchi et al., 2001]; and a multitude of field 
trials on management practices or weather 
modification experiments [Kimball et al., 2012]. 
Data from these field experiments are not always 
easily accessible or complete, however, and 
they certainly do not cover the full range of 
environmental conditions under which crops are 
grown globally. Comprehensive global reference 
data, such as the FAOSTAT archive [FAOSTAT 
data, 2013], are aggregated in larger spatial 
units (typically national scale), focus only on 

productivity (production per area harvested) and 
have substantial uncertainties with respect to 
the underlying land-use patterns and the mix of 
management practices (e.g. share of irrigated 
production, share of winter varieties, fertilizer use). 

Model drivers from projected future scenarios, 
such as daily weather data from climate model 
outputs, are subject to large uncertainties, which 
increase with spatial and temporal resolution 
[Hawkins and Sutton, 2009; 2011]. As most crop 
models require bias-corrected weather data at 
daily resolution, this uncertainty is compounded 
by the variety of datasets and algorithms used 
in necessary down-scaling and bias-correction 
methods [Roudier et al., 2011]. 

Scenarios for future changes in management 
practices, including fertilizer application, planting 
dates, crop mixes, rotation cycles and varieties 
used must be developed by the crop-modelling 
community to evaluate potential pathways for 
adaptation. Scenarios on future socio-economic 
development, such as the Shared Socioeconomic 
Pathways (SSPs) [Kriegler et al., 2012], can provide 
some guidance here, but substantial extensions 
are required to capture the diversity of agricultural 
components and, given the important role that 
agriculture plays for GHG budgets, reference must 
be made to assumptions on emissions in the 
Representative Concentration Pathways (RCPs) as 
well [Rosenzweig et al., 2013].

Despite the substantial uncertainty in reference 
data and regarding future drivers, global-scale 
analyses are necessary and inevitable for the 
assessment of global change and climate change 
impacts. To be useful in economic models or 
assessments, for example, these analyses require 
crop model results that are driven with globally 
consistent assumptions, modelling details and 
input datasets. Given the international nature of 
agricultural markets, the effects of climate change 
on agricultural production and food security cannot 
be assessed for individual regions but require 
globally consistent analyses, in which regional and 
national analyses can be embedded. A consistent 
global biophysical perspective is thus essential to 
enable understanding of how markets will respond 
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to altered productivity and patterns of productivity 
[Nelson et al., 2014a; Nelson et al., 2014b]. 

4.	 Recent advances in global-
scale crop modelling

4.1	 Global-scale impacts

The extent of future climate change itself is highly 
uncertain, due in large part to the inherent difficulty 
in predicting future energy consumption or climate 
policies. In the latest IPCC report, the upper end 
of projections for global mean temperature change 
is 4.1+/-0.5°C by 2100 [IPCC, in press]. The 
increase in global mean temperature, however, 
does not translate directly to temperature change 
in agricultural areas. Temperatures are generally 
expected to increase more rapidly over land, for 
example, since ocean temperatures – and thus 
air temperatures above oceans – rise more slowly. 
There is also the so-called “polar amplification” 
phenomenon, in which warming proceeds more 
rapidly at higher latitudes. Finally, mean annual 
changes may be distributed asymmetrically across 
seasons (summer vs. winter, spring vs. summer, 
etc.) and relatively small seasonal shifts may 
include significant increases in extreme weather 
events that may last only a few days but are often 
extremely costly. 

Current agricultural areas are likely to be 
subjected to significant temperature increases, 
even if effective climate policies are enforced in the 
near future. Precipitation patterns, incident solar 
energy (affected by changes in cloudiness), and the 
prevalence and intensity of extreme events (e.g. 
heat waves, floods, droughts), are expected to be 
strongly affected by climate change, as well. These 
changes are much more difficult to project reliably 
than are changes in temperatures, and uncertainty 
is thus considerably higher [Hawkins and Sutton, 
2009; 2011]. This is especially true at temporal 
and spatial resolutions relevant to agriculture 
[Hawkins and Sutton, 2009; 2011]. Finally, there 
are additional biophysical uncertainties (such as 

the effectiveness of carbon dioxide “fertilization”5 
under various real-world conditions), socio-
economic unknowns (such as the distribution of 
management and expected future changes over 
the coming decades) and uncertain resource 
constraints (such as the availability of freshwater 
for irrigation). Forecasts of agricultural productivity, 
whether under a changed climate or not, should 
therefore not be expected to have any reliability 
beyond seasonal lead times. Even so, these 
assessments are a necessary and invaluable tool 
for understanding the risks and opportunities and 
for identifying suitable and sustainable adaptation 
measures. 

Despite the uncertainties, our current 
understanding allows for some robust conclusions 
that also facilitate policy-making and planning. 
Broadly speaking, no large-scale impact study 
has excluded the possibility that the overall 
effect of climate change and CO2 on agricultural 
productivity may be negative. Climate change is 
clearly a risk for agricultural production and it has 
the potential to pose a sizeable risk that would 
affect production patterns, the extents of cultivated 
areas, and food security and prices [Nelson et al., 
2014b]. The recent consolidated study on the 
impact of global climate change on agriculture, 
conducted in the framework of the AgMIP and 
ISI-MIP projects, finds that by 2100 the impact of 
climate change on crop yields for high-emission 
climate scenarios ranges between -20 and 
-45 percent for maize, between -5 and -50 percent 
for wheat, between -20 and -30 percent for rice, 
and between -30 and -60 percent for soybean 
[Rosenzweig et al., 2013a]. These impacts are 
likely to be at least partially offset by the beneficial 
effects of CO2 fertilization, especially since carbon 
fertilization effects are most pronounced in high-
emission scenarios. Assuming full effectiveness in 
large-scale production, climate change impacts 
would then range between -10 and -35 percent 
for maize, between +5 and -15 percent for wheat, 
between -5 and -20 percent for rice, and between 

5	 The term ‘carbon dioxide fertilization’ is defined as 
the enhancement of the growth of plants as a result 
of increased atmospheric CO2 concentration. 
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0 and -30 percent for soybean. When viewed 
in terms of absolute changes in the expected 
annual caloric production of existing agricultural 
areas that are attributable to climate (Figure 1), 
implications for trade patterns become especially 
clear. Major current global breadbaskets (e.g. in 
North America and South Asia) are expected to 
see significant reductions in agricultural production 
that will reduce their export shares and may require 
increased imports, as in South Asia, for example. 

In models that assume nitrogen is not a limiting 
factor, climate change impacts are generally 
somewhat less severe and CO2 fertilization 
effects are generally more positive, meaning that 
yields in many areas are projected to increase 
[Rosenzweig et al., 2013a]. This is especially true in 
semi-arid regions [Deryng et al., in prep.]. 

The wealth of global, regional, and site-based 
studies provides a basis for conclusions that 
are robust across a broad selection of climate 
scenarios, management assumptions, locations 
and scales. Broadly speaking, climate change 
impacts on agriculture become worse with 

increasing temperatures. Associated changes in 
precipitation can cause considerable variation as 
well, but do not challenge the general relationship. 

There are important differences between 
tropical and temperate/boreal regions that 
will affect the global patterns of agricultural 
production and thus affect trade. Tropical 
regions, including many developing countries, 
have climates that are already at the upper 
end of optimal temperature ranges for many 
agricultural plants and are projected to experience 
decreasing agricultural productivity even with 
small increases in temperature. In higher latitudes 
or at higher altitudes, agricultural production 
is often constrained by cold temperatures and 
therefore small increases in temperature of 1 to 
2°C are projected to be beneficial to agricultural 
productivity. At higher temperature increases, 
climate change impacts in these regions are 
projected to become negative as well, although 
at a slower pace. Agricultural management is 
a crucial determinant in any projection of future 
agricultural productivity. Management systems 

figure 1
Spatial patterns of food supply impacts. Average annual change in caloric production of maize, soy, wheat and rice 

by end-of-century for RCP 8.5. Median of six global crop models, driven by outputs of five global climate models from 
CMIP5. Results are averaged to 309 Food Producing Units (FPUs), assuming no change in farm management and 
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do not only affect the actual strength of climate 
change impacts on agricultural productivity, their 
level of flexibility also allows for broad adaptation 
measures to changing environmental conditions. 
These measures include some that can be easily 
implemented at farm level, e.g. adjustments 
in planting dates [Liu et al., 2013; Waha et al., 
2012a], while others may require targeted 
research (e.g. breeding new varieties) or intensive 
economic investment (e.g. large-scale expansion 
of irrigation infrastructure). Tropical regions, which 
include many developing countries, are assumed 
to have considerable development potential to 
increase agricultural productivity through improved 
management and technology [Deryng et al., 2011; 
Licker et al., 2010; Neumann et al., 2010; van 
Ittersum et al., 2013].

Many key aspects of the impact of climate 
change on agricultural production will require 
additional research, including the ability of plants 
to acquire nutrients under different conditions, 
such as greatly elevated atmospheric CO2 
concentrations [Boote et al., 2013; Taub et al., 
2008], which is especially important for issues of 
food quality and nutrition security. The prevalence 
and propagation of pests and diseases are also 
likely to change in a warmer climate [Bebber et al., 
2013], posing another major management 
and adaptation challenge for future agricultural 
production. 

Broadly speaking, global-scale climate 
change impact assessments have not evolved 
significantly since the first global climate change 
impact assessment in 1994 [Rosenzweig and 
Parry, 1994]. Climate change has the potential to 
damage productivity across all agricultural areas. 
Tropical areas are likely to experience detrimental 
impacts even at low levels of global warming 
and potentially catastrophic impacts at higher 
levels, while high-latitude and high-altitude areas 
could profit from small or medium increases 
in temperatures. There are large uncertainties 
with respect to the beneficial effects of CO2 
fertilization (increased photosynthetic action 
and reduced water requirements for plant 
growth under elevated atmospheric CO2 

concentrations). The first study of agricultural 
impacts was conducted by extrapolating just 
over 100 field-scale assessments [Rosenzweig 
and Parry, 1994], while models today cover the 
entirety of current global cropland area and even 
potentially cropped areas. 

Until recently, global-scale climate impact 
assessments have been relatively scarce and 
have analysed only a single or small number 
of assessment models, climate forcings or 
climate scenarios [e.g. Fischer et al., 2005; 
Liu et al., 2007; Müller et al., 2009; Nelson et al., 
2009; Nelson et al., 2010; Parry et al., 2004; 
Stehfes et al., 2007]. However, the selection 
of climate scenarios, even for the same 
GHG emission scenario, can greatly affect 
the assessment of climate change impacts 
[Osborne et al., 2013]. Depending on projected 
patterns of climate change, which can vary 
strongly between implementations of GHG 
emission scenarios in different climate models, 
projected impacts on agricultural productivity can 
be very different [Müller and Robertson, 2014; 
Osborne et al., 2013].

A recently conducted first-of-its-kind 
intercomparison of GGCMs within AgMIP 
[Rosenzweig et al., 2014] and for the agricultural 
sector in ISI-MIP [Warszawski et al., 2014] 
allowed for a globally consistent analysis 
across seven different GGCMs. The project 
included projections for 20 different climate 
scenarios (four RCPs [Moss et al., 2010; van 
Vuuren et al., 2011] implemented by five different 
climate models as part of the Coupled Model 
Intercomparison Project CMIP5 [Taylor et al., 
2012]: HadGEM2-ES [Jones et al., 2011]; IPSL-
CM5A-LR [Dufresne et al., 2013]; MIROC-ESM-
CHEM [Watanabe et al., 2011]; GFDL-ESM2M 
[Dunne et al., 2013a; Dunne et al., 2013b]; and 
NorESM1-M [Bentsen et al., 2013; Iversen et al., 
2013]) and were bias-corrected against historical 
weather data [Hempel et al., 2013]). Model groups 
considered fully irrigated and rain-fed systems 
[Rosenzweig et al., 2014], using two assumptions 
on the effectiveness of CO

2 fertilization (i.e. none 
and full). 
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Results from the participating models (Table 1) 
are directly comparable with respect to climate 
and CO2 forcings6, but their assumptions and 
input data on management differed in some 
important ways. Many of these differences are 
fundamental to the ways that different groups have 
chosen to represent management decisions such 

6	 The term CO2 forcing is short hand expression that 
links increased CO2 concentration with a given rise 
of average temperature. The so-called “radiative 
forcing” is linked to CO2 concentration and the extent 
of its deviation from an initial state (typically chosen 
as the pre-industrial CO2 concentration level of 280 
part per million value or ppmv). The higher the CO2 
concentration, the higher the radiative forcing which 
in turn raises the radiative energy reaching the earth’s 
surface and cause the average earth temperature to 
increase.

as planting, irrigation and fertilizer application. 
These differences in assumptions and input data 
contribute substantial uncertainty in addition 
to that caused by differences in underlying 
functional representations of key processes and 
other model implementation choices. The joint 
uncertainties of management assumptions and 
model implementations are often larger than the 
uncertainty represented by the five climate models 
selected here, although this depends on the region 
and scale of analysis. 

A compilation of site-based climate change 
impact studies for the 4th Assessment Report 
of the IPCC showed that crop yields decline 
with increasing local temperature changes and 
associated atmospheric CO2 concentrations and 

Model Version References for model  
description and  

applications

Institution

EPIC EPIC0810 [Izaurralde et al., 2006;  
Williams and Singh, 1995]

BOKU, University of Natural 
Resources and Life Sciences, 
Vienna

GEPIC EAWAG [Liu et al., 2007;  
Williams et al., 1990]

EAWAG
(Swiss Federal Institute 
of Aquatic Science and 
Technology)

GAEZ in IMAGE 2.4 [Bouwman et al., 2006;  
Leemans and Solomon, 1993]

Netherland Environmental 
Assessment Agency (PBL)

LPJmL - [Bondeau et al., 2007; 
Fader et al., 2010; 
Schaphoff et al., 2013; 
Waha et al., 2012]

Potsdam Institute for Climate 
Impact Research

LPJ-GUESS 2.1 with crop module [Bondeau et al., 2007; 
Lindeskog et al., 2013; 
Smith et al., 2001]

Lund University, Department 
for Physical Geography and 
Ecosystem Science,
IMK-IFU, Karlsruhe Institute 
of Technology, Garmisch-
Partenkirchen, Germany 

pDSSAT pDSSAT v0.5 (DSSAT 
4.0 and 4.5)

[Elliott et al., 2013b;  
Jones et al., 2003]

University of Chicago and 
Argonne National Laboratory 
Computation Institute

PEGASUS V. 1.1 [Deryng et al., 2011] Tyndall Centre
University of East Anglia, UK/ 
McGill University, Canada

table 1
Global Gridded Crop Models and references for the AgMIP-led ISI-MIP fast-track simulation exercise
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precipitation changes [Easterling et al., 2007]. In 
temperate regions, crops can profit from low to 
medium increases in local temperatures – e.g. 
if cold temperature limitations are alleviated or 
if the associated changes in precipitation and 
CO2 fertilization lead to higher productivity. In the 
tropical regions, however, yields typically decline 
even with small increases in local temperatures.

With the GCCMI, these impact patterns were 
confirmed for a more comprehensive coverage 
of regions and climate scenarios, and a response 
to local temperature rise was documented 
for soybean, which had not been covered by 
Easterling et al. [2007]. This modelling exercise 
could also demonstrate the importance of nitrogen 
limitation in the assessment of climate change 
impacts, which indicates the general importance 
of management constraints for the assessment of 
climate change impacts on agriculture. If nitrogen 
limitations are explicitly considered, crops show 
less profit from CO2 fertilization [Leakey et al., 
2009] and amplified negative climate impacts.

Accounting for nitrogen dynamics reduces 
the inter-model uncertainty associated with the 
effectiveness of CO2 fertilization on agricultural 
yields, yet this factor still remains one of the largest 
single sources of uncertainty. While it is clear that 
elevated CO2 concentrations stimulate increased 
photosynthesis in C3 plants, significant questions 
remain as to how this translates into increases in 
harvested biomass (e.g. grain mass) [Leakey et al., 
2009], especially in real-world field conditions, 
and to what extent this can lead to unwanted 
side effects such as declining protein content and 
quality [Erbs et al., 2010] or higher susceptibility to 
insect damage [Zavala et al., 2008].

4.2	 Focus regions of climate change 
impacts

There are two key types of focus regions for 
climate change impact assessments: those that 
are subject to large relative changes in agricultural 
productivity under climate change; and those that 
are currently major producers and run some risk 

of being negatively affected by climate change. 
Both types have implications for trade patterns but 
they may require very different assessment and 
response strategies. 

The most substantial relative changes in crop 
productivity are expected in the low latitudes, 
across all major crops. Since agriculture is a 
relatively high share of national gross domestic 
product (GDP) in many tropical regions, these 
impacts combine with increasingly globalized 
agricultural markets to jeopardize food security 
in a dual way: farmers face decreasing local 
productivity and income, while food availability is 
increasingly determined by market access and 
global food prices. On the other hand, these 
countries often have average crop productivity 
that is considerably lower than what environmental 
conditions should allow (this is the so-called yield 
gap) [Licker et al., 2010; Neumann et al., 2010]. 
Better market access, infrastructure, fertilizers, 
pesticides, machinery and alternative crop 
varieties may be able to contribute substantially 
to closing these gaps [Markelova et al., 2009], 
with implications for development, food security, 
poverty, climate impacts and potential climate 
adaptations. A notable exception to this 
expectation is Egypt, where the yield gap is 
small [Neumann et al., 2010], irrigation is used 
extensively, and water resources are strongly 
limiting. Here, a shift from staple to high-value 
crops, which would require improved market 
structures, could increase farm incomes.

India is a key region for study for many 
reasons. It is likely to experience strong relative 
impacts of climate change and it is a top global 
producer of many crops [FAOSTAT data, 2013]. 
Changes in agricultural productivity in this region 
are thus extremely critical for both local and global 
food security. India’s comprehensive infrastructure 
for irrigation [Döll and Siebert, 2000] may render 
adaptation to more erratic rainfall under climate 
change relatively easy, yet the overexploitation of 
groundwater reservoirs [Rodell et al., 2009] and 
the dependence of surface water reservoirs on 
monsoon rainfall [Maity and Kumar, 2009] may lead 
to decreasing freshwater availability for agriculture 
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under climate change and could further reduce 
productivity [Elliott et al., 2014a]. 

Current yield trends in India are mixed, and 
largely stagnating for wheat [Ray et al., 2012]. 
New management practices may help to improve 
yields [Stoop et al., 2002] and have even led 
to a recent world record harvest [Kassam and 
Brammer, 2013]; however, the feasibility and 
applicability of these techniques at larger scales 
have been contested [Sumberg et al., 2013]. The 
preponderance of sequential cropping systems – 
i.e. producing crops in several seasons of the 
year – in India will complicate simple adaptations, 
such as changes in planting dates or selection 
of fast- or slow-maturing varieties, because the 
implications for adjacent growing periods must be 
taken into account as well. 

Major agricultural producers in temperate 
zones, such as the European Union for wheat 
or the United States of America for maize, can 
also be subject to strong negative impacts under 
climate change. These include: reduced water 
availability during the growing season; more 
frequent and intense heat events, which are 
most damaging during flowering [Asseng et al., 
2011; Edreira et al., 2011; Hawkins et al., 2013a; 
Teixeira et al., 2013]; and accelerated phenology, 
which can lead to reduced biomass production 
[Liu et al., 2013]. However, these regions also tend 
to have more flexibility for adaptation. Cropping 
periods tend to become longer in warmer 
climates as cold temperature limitations in spring 
and autumn are alleviated. Further, given the 
dominance of single cropping systems in these 
regions (i.e. only one cropping cycle per year) 
farmers have significant flexibility to adjust varieties 
(e.g. spring vs. winter varieties) or planting dates, 
to respond to changing conditions [Liu et al., 
2013]. Adjustments in planting dates can help to 
avoid periods with high temperature stress, exploit 
longer growing periods with varieties that mature 
more slowly and so have more time for biomass 
accumulation and grain filling, and target periods 
with improved water availability. In some temperate 
regions, multiple cropping systems could even 
become feasible in future climates, which could 

strongly increase agricultural productivity per area 
and year [Zhang et al., 2013]. 

4.3	 Inter-sectoral interaction

Agricultural production is highly integrated with 
other sectors and biogeochemical cycles. The 
most obvious of these factors are the availability 
of freshwater and of fertile land, which constitute 
direct constraints to agricultural production. 
Irrigation agriculture directly competes with other 
consumers of freshwater, such as households, 
industry and energy production. Along with 
impacts from climate change, socio-economic 
and environmental factors can thus have a major 
effect on agricultural productivity and on the 
potential for climate adaptation through irrigation 
[Elliott et al., 2014a]. Indirect impacts of global 
climate change on agricultural productivity, such 
as those caused by changes in the availability 
of freshwater for irrigation, tend to follow similar 
patterns as direct impacts. As a result of climate 
change, freshwater availability increases in 
regions in the temperate zones but decreases in 
regions in the low latitudes, including prominent 
agricultural and heavily irrigated areas in India, 
China and Egypt. Increased availability in regions 
that already have ample freshwater supplies is 
likely to have only minimal potential to increase 
production, since small increases in average yield 
and decreased interannual variability are unlikely to 
justify large expenditures on irrigation infrastructure 
[Elliott et al., 2014a]. Constraints on freshwater 
availability in heavily irrigated areas, however, may 
lead to large reductions in the irrigated share of 
overall agricultural production, amplifying direct 
climate change impacts and increasing weather-
induced variability in these regions. 

Freshwater rationing in the form of deficit 
irrigation has the potential to increase system-level 
water-use efficiency (i.e. agricultural production 
per unit of water) by applying sufficient irrigation 
amounts to reduce, but not eliminate, water 
stress. This approach of focusing on water 
productivity rather than land productivity (i.e. 
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agricultural production per unit of land) [Fereres 
and Soriano, 2007] is especially important in dry 
areas, where availability of water is usually more 
limiting to agricultural production than land [Geerts 
and Raes, 2009]. To date, there has been little 
research conducted on deficit irrigation at the 
global scale. A recent paper by Liu et al. (2014) 
tackled this issue using a global general model 
and may have opened the door for more research 
on the topic.

Availability of freshwater is also affected by 
increased competition from socio-economic 
development [Alcamo et al., 2007]. Economic 
growth may increase withdrawal of water for 
industry, even if accompanied by increases 
in water-use efficiency. Increased energy 
production, whether from fossil fuels or low-
carbon alternatives, generally requires substantial 
additional water withdrawal for cooling or cleaning. 

Many assessments of likely future climate 
mitigation pathways project strong increases in 
biofuel production, which will compete directly for 
land and water resources with food, feed and fibre 
producers. Biofuels are a renewable energy source 
generated from re-growing plant biomass or from 
other biological sources (e.g. manure). Biofuels are 
often classified into two categories: first-generation 
biofuels made from sugar, starch and vegetable 
oils, which are typically derived from products 
suitable for human consumption and thus compete 
directly with food production; and second-
generation biofuels made from cellulosic material 
unfit for human consumption. The conversion of 
cellulose into an energy source compatible with 
current technologies, especially in the transport 
sector, is still a major challenge, but its use is 
increasing as a feedstock for heat and electricity 
generation. Cellulose-based biofuels, however, 
compete with food production for resources, most 
importantly fertile land and water, as well as with 
many other ecosystem services. While proponents 
of second-generation biofuels point to the potential 
for using marginal lands for the production of 
biomass, the idea of existing “unused land” has 
been challenged [Searchinger et al., 2008; Elbehri, 
Segerstedt, and Liu, 2013]. 

The competition for land and water leads to 
deforestation of primary and secondary forests, 
producing direct and indirect land-use change 
[Melillo et al., 2009], which typically diminishes 
natural resources and ecosystem services 
[Metzger et al., 2006] and increases emissions of 
GHGs [Popp et al., 2010]. Under liberalized global 
trade regimes, increased demand for agricultural 
food, feed, fuel and fibre crops can thus lead 
to significant land-use change, with severe 
environmental consequences that are often difficult 
to account for and thus to regulate [Schmitz et al., 
2012; Schmitz et al., 2013]. 

The interaction of agricultural production with 
other sectors and biogeochemical cycles can also 
diminish the ability of societies to cope with climate 
change, by compounding the pressures. Besides 
reduced response options and secondary impacts, 
as with the example of the reduced availability 
of freshwater constraining irrigation [Elliott et al. 
2014a], multiple stressors can also reduce the 
adaptive capacity of societies [Quinn et al. 2011]. 
As a consequence, agricultural regions that are 
simultaneously subjected to detrimental impacts in 
other sectors may experience amplified biophysical 
impacts, socio-economic consequences, and/or 
a reduced capacity to respond to change. These 
“hotspots” should be focal regions for adaptation 
research [Piontek et al. 2014].

5.	 The Global Gridded Crop 
Model intercomparison

There are a variety of future climate scenarios: 
combinations of potential emissions pathways 
[e.g. Moss et al., 2010; Nakicenovic and Swart, 
2000]; their implementation in a general circulation 
or earth system model; and statistical processing 
for bias correction [e.g. Hempel et al., 2013; 
Piani et al., 2010] or downscaling [e.g. Pierce et al., 
2009] . However, despite this diversity of scenarios, 
it is clear that climate change poses a significant 
threat to agricultural production throughout the 
cultivated areas of the world. Even so, some 
regions and crops are confronted by challenges 
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both more immediate and more severe than 
others. There is strong agreement among GGCM 
simulations that tropical regions will experience 
substantial negative impacts on agricultural 
productivity from climate change, given current 
management practices. While small increases 
in global mean temperature may be beneficial 
in cooler regions, climate change impacts are 
likely to be negative at moderate or high levels 
of global warming. These findings are largely in 
agreement with previous site-scale assessments, 
as summarized by the IPCC’s Fourth Assessment 
Report [Easterling et al., 2007] and earlier global-
scale assessments [Rosenzweig and Parry, 1994].

Beyond broad-scale patterns the picture is 
more opaque, as was recently demonstrated by the 
first intercomparison of GGCMs within the ISI-MIP 
and AgMIP frameworks. This is best highlighted 
by the range of possible assessment outcomes 
based on the impact model chosen. Indeed, in the 
ISI-MIP and AgMIP assessments, the differences 
among impact models were found to dominate the 
ensemble spread for most measures.

In order to begin to resolve these issues, Ag-
GRID has recently undertaken the GGCMI project. 
This project consists of a set of highly structured, 
protocol-based global simulation experiments 
designed by climate and agro-environmental 
scientists from around the world. The project 
will proceed in three overlapping phases, each 
building on the inputs, outputs, and lessons of 
the ones preceding it. In Phase 1, models will 
be driven by harmonized management inputs 
and nine historical climate-forcing datasets 
(spanning 1948-2012), focusing on model 
comparison, validation, and historical extremes. 
In Phase 2, historical data products will be varied 
to generate a structured input ensemble designed 
to evaluate model sensitivity and develop high-
resolution multi-dimensional response surfaces 
for the space of possible future values of carbon, 
temperature, water and nitrogen. In Phase 3, a 
new comprehensive multi-model climate impact 
assessment will be conducted within the AgMIP 
and ISI-MIP frameworks, with climate drivers 
from CMIP5 and CORDEX as well as detailed 

adaptation scenarios and a focus on the effects 
of increased frequency and severity of extreme 
weather events.

Harmonization of assumed growing periods 
and nitrogen fertilization is a key feature of the 
GGCMI Phase I protocols, and greatly improves 
comparability of results between models. 
New metrics for model performance are being 
developed in concordance with metrics developed 
for general circulation models [Gleckler et al., 
2008]. Due to the huge differences in the types and 
purposes of GGCMs, robust model evaluation will 
require much more than just the reproduction of 
yields. Interannual variability, the effects of historic 
extreme weather events on food production, and 
crop and region-specific analyses will also be of 
special interest. 

6.	 Open questions

The uncertainty inherent in modelling global-scale 
climate change impacts on agriculture has several 
underlying reasons that carry implications for future 
research. Most important among these is the 
lack of suitable reference data for model testing, 
calibration and improvement – an aspect of the 
modelling challenge that is not likely to see great 
improvement in the near future. The vulnerability 
of a particular farm or region to climate change 
or to climate extremes depends strongly on the 
dominant management systems employed. In 
recent decades, much progress has been made 
in identifying dominant cover classes and some 
measures of irrigation infrastructure distribution, 
using remote sensing. However, little information 
is available regarding management practices 
(e.g. fertilizer application rates, planting densities, 
sowing dates) at the high spatial and temporal 
resolutions and global extent required to enable 
accurate representations of current management 
systems in GGCM simulations. 

Uncertainty regarding the effectiveness of 
CO2 fertilization effects, the combination of 
stimulated photosynthesis in C3 plants and 
reduced water consumption in all plants under 
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elevated atmospheric CO2 concentrations, is 
especially large in global-scale simulations. These 
studies include the full range of uncertainties in 
field-scale modelling, and involve combinations 
of environmental conditions (e.g. extremely 
dry, low fertilizer inputs) that are not sufficiently 
evaluated in laboratory, open-top chamber, 
or FACE experiments [Ainsworth and Long, 
2005; Leakey et al., 2009]. Finally, national and 
even sub-national yield statistics are often too 
aggregated to provide a good evaluation of model 
performance or determination of the responsible 
underlying mechanisms, due to the large amount 
of spatial variability in environmental, climate 
and management conditions. These points are 
discussed in more detail in the following section.

6.1	 Model evaluation and validation

For a comprehensive evaluation of GGCMs, 
long-time series of high-quality global data are 
required for many crops. National and even sub-
national statistics are often at too low a resolution 
to capture the relevant weather-induced variability 
of crop productivity, which instead is smoothed 
out by spatial aggregation over larger regions. 
Changes in production area and management 
practices are also typically not well documented 
in these statistics. The only reference yield data 
available for comparison with sufficient spatial and 
temporal coverage are national yield statistics, 
and the absence of high-quality management data 
is thus a strong constraint on model evaluation. 
Climate change impacts also differ significantly 
between irrigated and rain-fed systems, yet their 
contribution to overall production and average 
yields in a given region is often unclear, especially 
with respect to interannual variation, because 
installed irrigation capacity is not always used to 
the same extent. 

The resolution of national statistics can be 
improved by assimilating sub-national statistics 
from a variety of sources [Iizumi et al., 2014; 
Ray et al., 2012], or by incorporating satellite-
based observations of productivity [Iizumi et al., 

2014; Ray et al., 2012]. These products should 
greatly improve the scope of possible model 
evaluations, but care must be taken as these 
are not direct observations, but combinations of 
census data, remote sensing and modelling rules. 
Site-based reference data from FACE experiments 
[Ainsworth and Long, 2005; Leakey et al., 2009] 
and eddy-flux measurements [Baldocchi et al., 
2001] can also provide valuable insights, but are 
limited with respect to coverage of agroclimatic 
regions, management systems and crops. 

Phase I of the Ag-GRID GGCMI will use these 
and other reference datasets to evaluate models 
over more than six decades. 

6.2	 Management

The only datasets available for crop-specific irrigation 
shares are based on “installed irrigation equipment” 
in about the year 2000 but contain no information 
on the temporal variations or actual irrigation water 
amounts applied [Portmann et al., 2010] anything 
on actually irrigated areas [You et al., 2010] or these 
data are not crop-specific [Thenkabail et al., 2009]. 
Similarly, there is large uncertainty with respect to 
growing seasons. Again, national census data may 
not reflect the sub-national variability or diversity of 
systems. The data compilations for global-scale 
applications [Monfreda et al., 2008; Portmann et al., 
2010] fail to distinguish between spring and 
winter varieties or between major differences in 
management (e.g. rain-fed vs. irrigated systems). 

Nitrogen is the most important plant nutrient, 
which is applied to fields in the form of organic 
(manure) and inorganic (artificially synthesized 
ammonium) compounds as well as by atmospheric 
deposition. Input levels vary greatly across space 
and time but also across crops and management 
systems. Observational data are generally 
available only for artificial fertilizer consumption at 
national level, with little information about its use 
for specific regions, crops or cropping systems. 
Stimulated plant growth, whether due to warmer 
temperatures in high latitude locations or to 
elevated CO2 levels, can be inhibited by a deficit 
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in nutrient supply, following Liebig’s minimum law7. 
Nutrient deficits can also mask negative climate 
change impacts by reducing plants’ susceptibility 
to changes in climate. National fertilizer data 
have been downscaled and assigned to specific 
crops [Mueller et al., 2012] and will be used in 
combination with estimates of national manure 
availability [Potter et al., 2010] for harmonized 
management data inputs in Ag-GRID’s GGCMI 
model evaluation. 

6.3	 Effects of elevated atmospheric 
carbon dioxide concentrations

Besides global warming, increased 
atmospheric CO2 concentrations also stimulate 
photosynthesis in C3 plants and reduce water 
requirements for all plants. Plant photosynthesis 
is constrained by available energy (sunlight 
being intercepted by leaves), the plant’s capacity 
for photosynthesis (mainly determined by 
the abundance of the Rubisco enzyme) and 
the availability of CO2 as a primary input to 
photosynthesis. In agricultural systems, where 
nutrient availability and thus nitrogen limitation 
of Rubisco activity can be managed to some 
extent, atmospheric CO2 concentrations often 
limit photosynthetic rates for the majority of 
plant species. Under such conditions, rising 
CO2 concentrations in the atmosphere due 
to anthropogenic emissions can stimulate 
photosynthesis. This effect is robust and 
confirmed by long-term field trials, such as the 
FACE experiments. Elevated atmospheric CO2 
concentrations can lead to down-regulation of 
Rubisco activity in the long run; however, this 
does not challenge the overall stimulating effect 
of elevated atmospheric CO2 concentrations on 
photosynthesis [Leakey et al., 2009]. 

All plants, independent of their photosynthetic 
pathways (C3 or C4), profit from elevated 

7	 This law, popularized by Justus von Liebig, states 
that states that growth is controlled not by the total 
amount of resources available, but by the scarcest 
resource (limiting factor).

atmospheric CO2 concentrations in semi-arid and 
arid environments because of the direct coupling 
of the carbon and water fluxes between plants 
and the atmosphere. The pores through which 
CO2 enters the plant – the stomata – are also the 
pores through which water vapor leaves the plant 
during plant transpiration. The opening of the 
stomata is controlled by the plant’s cell pressure, 
which decreases when the plant dries. As a 
consequence, plants close their stomata under 
dry conditions to avoid wilting and this reduces 
their ability to take up CO2. Under elevated 
atmospheric CO2 concentrations, stomata can 
be closed more often to save water without 
reducing the influx of carbon for photosynthesis, 
leading to higher crop-water productivity (unit 
of output per unit of water) [Manzoni et al., 
2011; Polley, 2002]. A large body of research, 
including laboratory work, open-chamber field 
trials and FACE experiments, has documented 
the beneficial effects of elevated atmospheric 
CO2 concentrations on photosynthesis and plant 
growth [Ainsworth and Long, 2005; Leakey et al., 
2009; Polley, 2002]. 

However, there is still large degree of 
uncertainty regarding the general effects of 
elevated atmospheric CO2 concentrations at 
larger scales and for longer time horizons. To 
harness increased plant growth under elevated 
atmospheric CO2 concentrations, farmers will 
have to adjust fertilization and possibly other 
management practices, such as the selection of 
cultivars [Ribeiro et al., 2012]. There are some 
indications that gains in photosynthesis and 
total biomass may not lead to proportional gains 
in yields (e.g. for grains) [Leakey et al., 2009]. 
Increases in biomass and yield may also lead 
to decreases in protein concentration and thus 
in nutrient quality and economic profitability 
[Pleijel and Uddling, 2012; Taub et al., 2008]. 
Elevated atmospheric CO2 concentrations 
have the potential not only to reduce protein 
concentrations but also to generally alter the 
chemical composition of plant tissues. These 
changes have also been shown to change 
the plants’ susceptibility to insect damage 
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[Dermody et al., 2008] and may require intensified 
crop management to avoid losses [Zavala et al., 
2008].

6.4	 Future challenges: Representative 
agricultural pathways 

Agricultural production is strongly dependent 
on weather conditions and thus susceptible to 
climate change impacts. However, management 
is also a central aspect in agricultural production, 
and mismanagement can lead to substantial 
reductions in production. The effects of 
mismanagement on agricultural production 
are often described using the concept of “yield 
gap analysis”, which describes the difference 
between yields actually achieved and potential 
yields – i.e. yields theoretically achievable under 
given environmental conditions, where no nutrient 
and water limitations constrain plant growth [van 
Ittersum and Cassman, 2013; van Ittersum et al., 
2013]. Global analyses have shown that there are 
substantial yield gaps, i.e. management-driven 
reductions in agricultural productivity, especially 
in many developing countries [Licker et al., 2010; 
Neumann et al., 2010], and limited market access 
was identified as one of the major reasons for this 
phenomenon [Neumann et al., 2010]. Besides 
identifying managerial deficits that can lower 
agricultural productivity, agricultural research 
can greatly improve agricultural productivity, 
e.g. by developing novel crop varieties that are 
more productive or less susceptible to drought 
phases, heat, insect damage or pests, or new 
soil and water management techniques. Such 
targeted agricultural research has led to substantial 
improvements in agricultural productivity in the 
past, as, for example, during the so-called “green 
revolution” [Evenson and Gollin, 2003; Pingali, 
2012]. Agricultural research is effective over 
longer time periods, as research and development 
typically have multi-annual cycles, and their 
effects are typically not captured by yield gap 
analyses because they do not necessarily affect 
the difference between actual and potential yields, 

but can move the potential yield level upwards 
[Dietrich et al., 2012].

Historically, yield increases have resulted from 
a combination of closing the yield gap and shifting 
potential yield levels upwards and, in the past, 
these yield increases have sustained the increases 
in global population. Recently, yield increases have 
stalled for many important crops and countries 
[Lin and Huybers, 2012; Ray et al., 2012] and yield 
improvements at historic rates have been found to 
be insufficient to sustain projected future demand 
for agricultural products [Ray et al., 2013]. 

Current research on climate change impacts 
often assumes static management systems 
[Rosenzweig et al., 2014] or addresses simple 
on-farm adaptation measures such as soil and 
water management or the adaptation of sowing 
dates [Folberth et al., 2012; Laux et al., 2010; 
Liu et al., 2013; Waha et al., 2012a], which can 
be assumed to be determined mostly by climatic 
and weather conditions [Waha et al., 2012b]. 
Adaptation to climate change can be complex and 
involve targeted research [Challinor et al., 2009; 
Challinor et al., 2007; Reidsma et al., 2009; Smith 
and Olesen 2010] but often can be achieved via 
simple and inexpensive technologies [Ebi et al., 
2011]. The assumption of static management 
systems in climate change impact assessments is 
thus not designed to provide assessments of future 
agricultural productivity but to explore the isolated 
effect of climate change only. This helps to reduce 
inconsistencies between biophysical models and 
economic models that take biophysical climate 
change impact projections as an input to their 
economic response [Müller and Robertson, 
2014; Nelson et al., 2014a; Nelson et al., 2014b]. 
However, assumptions regarding management 
systems can also greatly affect the projected 
strength of climate change impacts on agricultural 
productivity [Rosenzweig et al., 2014]. 

In light of its significance for the assessment 
of future agricultural productivity and for the 
assessment of future climate change impacts on 
agricultural productivity, consideration of various 
scenarios on future agricultural management is 
crucial. Such scenarios need to reflect plausible 
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possible future circumstances for all socio-
economic and biophysical dimensions that are 
important for agricultural production. At the 
global scale these comprise assumptions on 
future trade patterns, affecting global production 
patterns, market access for selling agricultural 
products and buying inputs (fertilizers, pest 
control, machinery, seeds) and price levels that will 
determine the profitability of different management 
options. National and economic unions (e.g. 
the European Union) may enforce agricultural 
policies or environmental regulations – including 
the mitigation of GHG emissions – that affect 
agricultural management and labour markets. 
Population growth [Lutz and Samir, 2010], 
migration [Aaheim et al., 2012; Kniveton et al., 
2012; McLeman and Smit, 2006] and urbanization, 
as well as future educational systems, may affect 
labour availability for agricultural production as 
well as production costs [e.g. Martin and Calvin, 
2010]. Finally, one central input for agricultural 
production, namely phosphorus, is in short supply 
globally and in the hands of very few actors; even 
though stocks may not be depleted this century 
[Van Vuuren et al., 2010], this has the potential 
to affect productivity levels, production costs and 
production patterns globally [Bouwman et al., 
2009; Carpenter and Bennett, 2011; 
MacDonald et al., 2011].

In global scale assessments, agricultural 
systems are not represented in much detail so 
far, but typically involve assumptions on sowing 
dates, varieties grown and fertilizer inputs 
[Rosenzweig et al., 2014]. Future scenarios 
regarding agricultural system change thus only 
need to address these dimensions if models do not 
take up the challenge to better integrate different 
management systems [e.g. Del Grosso et al., 
2009]. This challenge can be more complex for 
assessments at regional scale [Antle et al., under 
review].

The most promising approach for developing 
scenarios of future agricultural production systems, 
often referred to as Representative Agricultural 
Pathways (RAPs), is to expand existing (or currently 
under development) socio-economic scenarios, 

such as the so-called SSPs [Kriegler et al., 2012]. 
These typically address some of the relevant 
dimensions for agricultural productions (e.g. trade 
liberalization scenarios) but need to be filled out 
with more explicit assumptions on others (e.g. 
fertilizer rates, speed of dissemination of better-
adapted crop varieties) that just need to be 
consistent with the general storylines of the SSPs 
and the more explicit assumptions therein. 

6.5	 Future challenges: Drought and 
climate extremes

Agricultural production is directly dependent on 
weather conditions, especially in non-irrigated 
production systems. The effects of weather 
variability produce variations in national yield 
statistics; in many cases, changes in yield variability 
can be attributed to weather variability [Osborne 
and Wheeler, 2013]. As variability changes 
under global warming, this will affect agricultural 
production [Hawkins et al., 2013b], especially 
during heat-sensitive phases [e.g. Asseng et al., 
2011; Edreira et al., 2011; Teixeira et al., 2013]. 

Drought affects millions of people globally 
each year, and warming temperatures and shifting 
precipitation patterns are likely to exacerbate 
the problem, increasing both the frequency 
and severity of large-scale droughts in globally 
important and agriculturally sensitive regions 
[Sheffield and Wood, 2008; Solomon et al., 2007; 
Wehner et al., 2011]. Recent work suggests that 
extended drought will harm more people in the 
future than any other climate-related impact, 
specifically in the area of food security [Romm, 
2011]. Therefore, the extent to which climate 
impact models can reproduce the effects of 
large-scale drought and heat events is likely to 
be one of the most important measures of model 
effectiveness, for determining whether these 
models are able to represent future impacts 
successfully. Dozens of specific large-scale 
extreme hydrological drought and heat events 
from the historical record (1948-present) have 
been catalogued by Sheffield and Wood [2011]. 
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Many of these events had major agricultural, food 
security and economic implications, and these can 
be evaluated using GGCMs in order to test these 
models under such extreme conditions. This will 
also result in a standardized, comprehensive multi-
model analysis of agricultural drought over the 
last 6+ decades, comparable among regions and 
decades, that will improve both the understanding 
of drought and its effects on crops and food 
production and the ability of models to represent 
the consequences of increased drought and heat 
in the future.

6.6	 Future challenges: Connecting 
with field-scale assessments 

Crop growth models have been applied to 
multiple purposes for several decades. Given 
that models applied to climate change impact 
assessment do not always employ the most up-
to-date formulations, Rötter et al. [2011] called for 
a general re-assessment of model effectiveness, 
as a first step towards improving model 
formulations. This effort has been undertaken by 
AgMIP [Rosenzweig et al., 2013], focusing first 
on the major cereal crops – wheat [Asseng et al., 
2013], maize [Bassu et al., 2014] and rice – while 
building communities and establishing research 
teams for other crops, pastures and livestock 
(see http://www.agmip.org). The projects 
focus initially on reproducing observations 
across different environmental gradients and 
management systems, followed by exploration 
of model sensitivities to changes in temperature, 
precipitation and atmospheric CO2 concentrations. 

As GGCMs are often based on field-scale 
models to varying degrees, field-scale model 
improvements can provide the basis for global-
scale improvements. Processes that have been 
identified as important for future crop productivity, 
such as temperature extremes [Asseng et al., 
2011], tropospheric ozone concentrations [Bender 
and Weigel, 2011; Leisner and Ainsworth, 2012; 
Pleijel and Uddling, 2012] and pests and diseases 
[Bebber et al., 2013; Mediene et al., 2011], will 

have to be implemented and tested in field-
scale models, before they can be implemented 
in global-scale assessments. The high quality of 
data available at some individual field sites greatly 
facilitates the development and evaluation of 
process formulations in crop models. Global-scale 
models can inform field-scale model development 
as well – for example, by characterizing expected 
ranges of growing conditions across large areas, 
as well as their implications for agricultural 
productivity and modelled sensitivities. 

6.7	 Future challenges: Informing 
economic assessment with 
biophysical climate change 
impact studies

Biophysical climate change impact assessments 
are a central precondition for understanding 
climate change impacts on future trade patterns 
in agricultural markets. There are a number of 
challenges to making these assessments useful 
to current agricultural economic assessments. 
The uncertainty with respect to climate change 
patterns [Christensen et al., 2007] and impact 
models [Rosenzweig et al., 2014] needs to be 
accounted for. A broad variety of issues exist 
in modelling consistency between economic 
and biophysical models. One important aspect 
is the difference between market commodities 
such as sugar, assumed to be homogeneous 
by economic models, which can be supplied by 
very different biophysical crops (here: sugar cane 
and sugar beet) that differ in their photosynthetic 
pathways (C4 for sugar cane, C3 for sugar beet), 
phenology, and plant organs of interest (stalks or 
beets). The ability to model these different crop 
types or assumptions about their mixture in the 
supply of the commodity sugar can greatly affect 
the assessment of climate change impacts on 
the commodity’s market shares and production 
[Müller and Robertson, 2014; Nelson et al., 2014a; 
Nelson et al., 2014b].
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7.	 Conclusions

Assessments of climate change impacts on global-
scale agricultural productivity have been conducted 
for the last several decades [Rosenzweig and 
Parry, 1994]. However, quantification of the 
uncertainties related to different climate scenarios, 
impact model implementations, assumptions 
on management systems and CO2 fertilization 
has been supplied only recently. The general 
global pattern of more negative impacts being 
experienced in the tropical regions than in the 
higher latitudes has been shown to be reliable 
across the significant uncertainty embedded in 
different climate scenarios and impact models used 
[Rosenzweig et al., 2014]. Available computational 
power to conduct global-scale climate change 
impact assessments on agricultural productivity 
has increased since the study of Rosenzweig and 
Parry [1994], and models have been adjusted for 
gridded global simulations [e.g. Elliott et al., 2014b; 
Liu et al., 2007] and extended to cover agricultural 
vegetation [e.g. Berg et al., 2011; Bondeau et al., 
2007; Deryng et al., 2011; Lindeskog et al., 
2013] or developed explicitly for large-scale 
applications [e.g. Challinor et al., 2004]. Input 
data on management aspects beyond national 
fertilizer rates [Liu et al., 2010; Mueller et al., 
2012] and some estimates of growing seasons 
[Portmann et al., 2010; Sacks et al., 2010], as well 
as good reference data, are scarce, and products 
have only recently been available [Iizumi, et al., 
2014; Ray, et al., 2012]. Therefore, evaluation 
of the performance of GGCMs has been very 
limited, mainly demonstrating that measurements 
of specific sites [e.g. Bondeau et al., 2007] or 
national yield statistics [e.g. Liu et al., 2007] can be 
reproduced. 

The first GGCMI conducted within AgMIP 
[Rosenzweig et al., 2013], as the agricultural 
biophysical sector assessment in the ISI-MIP, 
has shed some initial light on uncertainties 
across different GGCMs, management 
assumptions, climate scenarios and assumptions 
about the effectiveness of CO

2 fertilization 
[Rosenzweig et al., 2014]. This study confirms 

general patterns of climate change impact found 
in previous global-scale assessments [e.g. 
Müller et al., 2009; Rosenzweig and Parry, 1994] 
and site-specific studies [e.g. as compiled in 
Easterling et al., 2007].

Future activities to improve our understanding 
of possible future climate change impacts on 
biophysical agricultural productivity will be further 
coordinated by Ag-GRID and its GGCMI and will 
cover better model evaluation and understanding 
of key uncertainties (management, CO2 fertilization, 
temperature extremes) and model improvements 
(e.g. nutrient dynamics, management options). The 
project will foster interaction with the crop-specific 
activities as well as with the Global Economic 
group in AgMIP to address these challenges. 

The role of adaptation to climate change and 
the biophysical options to increase productivity, 
especially in regions with strong managerial 
deficiencies, have not yet been fully explored 
and will require improved representation of 
management options in GGCMs. Current 
analyses of climate change impacts on agricultural 
productivity are thus not complete projections 
of future productivity but of the isolated effect of 
climate change only. Changes in management 
have the potential to mediate climate change 
impacts as well as to improve agricultural 
productivity beyond simply compensating for 
negative climate change impacts.

Despite considerable uncertainties in terms 
of climate drivers and biophysical responses of 
agricultural systems, it is clear that climate change 
will have significant impacts on agricultural trade. 
Given the robust pattern of less severe, or even 
positive, impacts in temperate zones compared 
to tropical regions, economic measures and 
trade policies will have to be developed to ensure 
sufficient income in developing regions to allow 
them to participate in trade even under declining 
agricultural yields. 
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