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ABSTRACT

Projections of future food production necessarily rely on models, which must themselves be validated

through historical assessments comparingmodeled and observed yields. Reliable historical validation requires

both accurate agricultural models and accurate climate inputs. Problems with either may compromise the

validation exercise. Previous studies have compared the effects of different climate inputs on agricultural

projections but either incompletely or without a ground truth of observed yields that would allow dis-

tinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic

evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by

multiple observational data products. The parallelizedDecision Support System forAgrotechnology Transfer

(pDSSAT) is driven with climate inputs from multiple sources—reanalysis, reanalysis that is bias corrected

with observed climate, and a control dataset—and compared with observed historical yields. The simulations

show that model output is more accurate when driven by any observation-based precipitation product than

when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies,

that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all

choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under-

sensitive to floods and heat waves. These results suggest that the most important issue for agricultural pro-

jections may be not climate inputs but structural limitations in the crop models themselves.

1. Introduction

Understanding future food production is critical in

conditions of changing climate and growing population

(Porter et al. 2014). Meeting agricultural food demand

that is estimated to increase by;60% by 2050 (OECD/

FAO 2012) presents a significant challenge for future

society. Changing demand coupled with changing pro-

duction will likely have significant impacts on food

availability, and subsequently affect food prices (Nelson

et al. 2014) and migration patterns (Feng et al. 2012).

However, estimating future food production requires

understanding past food production. Agricultural models

are needed to simulate yield in future climate conditions

that are outside the range of historical experience. These

models must themselves be validated by ensuring that

they can reproduce past observed yields. Model valida-

tion efforts have increased in recent years with in-

creasing recognition of the importance of food security

to decision-making about climate change. For example,

the Agricultural Model Intercomparison and Improve-

ment Project (AgMIP; Rosenzweig et al. 2013) began in

2010 as an international effort to improve agricultural
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impacts assessments and to understand how climate

inputs and model structure introduce uncertainty.

Historical assessments play a key role in characterizing

that uncertainty.

Reliable historical validation requires both accurate

agricultural models and accurate data inputs. The most

common type of model for agricultural projections

under climate change are process-based agricultural

models, which attempt to explicitly represent bio-

physical processes affecting crop growth. These models

have been shown to reproduce crop yields in many

cases but have some known limitations (e.g., models do

not represent damages from pests). Recent intercom-

parisons between models and field experiments sug-

gest that models may also misrepresent some crop

responses to changes in climate (Asseng et al. 2013;

Bassu et al. 2014). In addition, the inputs used to drive

agricultural models for historical assessments may

themselves be problematic. Local weather station ob-

servations can be used for studies at single locations

(e.g., Asseng et al. 2013), but large-scale agricultural

assessments require wider coverage. Because obser-

vational networks are irregularly spaced and spatially

and temporally sparse, some approach must be used to

fill data gaps. Gridded weather records interpolate lo-

cal observations; retrospective analyses (reanalyses)

use a hybrid of models and observational data (e.g.,

Saha et al. 2010). Both approaches may involve biases

that can affect agricultural assessments.

Reanalyses are particularly useful for agricultural stud-

ies in developing nations where surface measurements are

scarce. Reanalyses provide a continuous global record

of physically consistent and high-resolution climate in-

formation derived from numerical weather prediction

models assimilated to observations of state variables (e.g.,

wind, humidity, pressure) from multiple data sources (in-

cluding satellites and balloons as well as ground stations).

Several groups have developed reanalyses with different

approaches for assimilating data into weather prediction

models. These reanalyses compare well to observations,

but show differences from each other and some common

biases (e.g., Bosilovich et al. 2009).

Reanalyses have known weaknesses in reproducing

certain variables important for crop growth. Reanalyses

typically do not assimilate precipitation, solar radia-

tion, or near-surface air temperature. Precipitation is

especially problematic because weather prediction

models must rely on simplified parameterizations of

cloud processes (e.g., Stensrud 2007). Crops are par-

ticularly sensitive to changes in precipitation (Hatfield

et al. 2011), so inaccurate rainfall inputs are a signifi-

cant concern and could compromise validations

(Watson and Challinor 2013).

Although many studies have evaluated reanalyses for

applications in the water sector (e.g., Mo et al. 2011;

Reichle et al. 2011; Xia et al. 2012; Rodell et al. 2004),

few studies have evaluated their utility for agricultural

projections. Agricultural studies differ in that crops are

sensitive to local and short-term climate conditions,

whereas hydrological studies are typically interested in

variables such as runoff that integrate conditions across

an entire watershed and over longer time periods. Ex-

isting studies of reanalyses used in agricultural assess-

ments have drawn inconsistent conclusions. Van Wart

et al. (2013) compare crop simulations in localized areas

driven by gridded weather products (including re-

analysis) or station observations. They find significant

differences in yield estimates but do not compare with

observed yields. Berg et al. (2010) and Challinor et al.

(2005) simulate yields over a wider area using reanalysis

with and without bias-corrected precipitation. They find

that bias correcting precipitation is necessary to reliably

estimate observed yields. De Wit et al. (2010) predict

single-year future yields with a crop forecasting model

driven by interpolated station observations and by re-

analysis with some variables (but not precipitation) bias

corrected. They compare with observed yields and

conclude that reanalysis without adjustments to pre-

cipitation prove suitable (as compared with simulations

driven by interpolated station observations). Because no

study compares all climate variables separately, these

results are difficult to parse. It remains unclear which

aspects of reanalysis may be problematic in large-scale

agricultural assessments.

In this work, we build on results from previous studies

and systematically evaluate the ability of a commonly

used crop model to estimate yields when driven by a

variety of climate inputs. We evaluate both crop model

and climate inputs to assess whether current technology is

sufficient and fit for the purpose of agricultural assess-

ments. We drive large-scale crop simulations with many

different data products, including gridded weather data,

reanalysis, and reanalysis with different variables bias

corrected or substituted with observational data.We then

compare directly with observed yields to evaluate both

yield sensitivities to climate inputs and fundamental

model performance. We restrict our study to the United

States, where high-quality subnational observational

yield records allow us to differentiate misrepresentations

due to climate input errors from those due to crop model

limitations. In the remainder of this paper, in section 2 we

describe the model, climate inputs, and methods; in sec-

tions 3a and 3b we evaluate the impact of climate input

data choices on yields; in section 3cwe extend the analysis

in the context of detecting extreme events; in section 3dwe

evaluate the ability of the model to reproduce observed
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interannual yield variations; and in section 4 we discuss

implications for agricultural assessments.

2. Materials and methods

a. Crop model and yield comparison

We simulate maize yields with a variety of climate

inputs from the period 1980–2009 using the Decision

Support System for Agrotechnology Transfer, version

4.5 (DSSAT v4.5), Crop Estimation through Resources

and Environmental Synthesis (CERES) maize model

(Jones et al. 2003; G. Hoogenboom et al. 2010, un-

published conference presentation). We use a paral-

lelized version of DSSAT (pDSSAT) under the

parallelized System for Integrating Impacts Models

and Sectors (pSIMS; Elliott et al. 2014) to simulate yield

at 1/48 resolution over the contiguous United States. The

pSIMS framework allows for large-scale simulations by

using the Swift parallel scripting language (Zhao et al.

2007) to process DSSAT concurrently on several clus-

ters. We use fixed management practices to isolate crop

model responses to weather and climate. Specifically, we

assume temporally homogeneous (but spatially hetero-

geneous) cultivar choice and planting windows (as de-

fined by Elliott et al. 2015), and uniform fertilizer

application (of 150kgha21). The growing season is cali-

brated in each grid cell to reproduce historical average

growing seasons [from U.S. Department of Agriculture

(USDA) survey data] using phenology parameters (fix-

ing the accumulated thermal units or growing degree-

days between planting and maturity). We simulate the

dominant cropped soil type in each grid cell using fixed

soil definitions from the Harmonized World Soil Data-

base (Nachtergaele et al. 2009). For irrigated areas,

DSSAT applies water automatically once soil moisture

falls below a set threshold. We simulate rainfed and irri-

gatedmaize yields separately for the entire spatial domain,

and aggregate yields to the county level using harvested

land-area estimates for each category from the Spatial

Production and Allocation Model (SPAM) dataset (You

et al. 2010). Unless otherwise noted, modeled county

yields represent a combination of rainfed and irrigated

maize production. We simulate yields using the Penman–

Monteithmethodology to approximate evapotranspiration,

an estimate based on measurements of temperature, wind

speed, humidity, and solar radiation. Simulations using the

Priestley–Taylor methodology, a simplification that does

not require estimates of wind or humidity, are included in

the online supplementary material for comparison.

We compare modeled yields to historical yields taken

from county-level survey data from the USDA Na-

tional Agricultural Statistics Service (NASS; Statistical

Methods Branch 2012). Because the purpose of this ex-

ercise is to assess the importance of observational cli-

mate for yield estimates and not our ability to model

technological and management advancements, we pri-

marily compare interannual variations between mod-

eled and historical yields. For this purpose we both

detrend and normalize national yields to remove some

drivers of yield change not associated with changes in

weather (e.g., technology). (Historically, advances in U.S.

farming practices have increased maize yields by .50%

from 1980 to 2009; see supplementary Fig. S1). We de-

trend by subtracting the least squares linear regression

(while preserving mean yield) and normalize by scaling

modeled yields by time-averaged NASS yield. In section

3d, we also show model yields modified by a simple vari-

ance adjustment, scaling year-to-year variation by that in

the historical NASS record [Eq. (1)]:

Yt
VA 5Yt

N

�
s
NASS

s
model

�
, (1)

where Yt
N and Yt

VA are normalized and variance-

adjusted (respectively) detrended yield at year t, and

s is the standard deviation of U.S. national (modeled or

NASS) yields.

For illustrative purposes, we also convert yields to

total maize value in dollars. We first calculate national

maize production by multiplying national average yield

[in metric tons per hectare (t ha21)] with 1980–2009

national averagemaize harvested hectares (as estimated

by SPAM). To convert maize production to dollars, we

assume a fixed price of maize around 2010 values of $204

per metric ton. [In reality, production value is also af-

fected by external factors such as insurance coverage,

technological advancements, and changes in manage-

ment practices (Elliott et al. 2013).]

b. Climate inputs

We drive pDSSAT both with reanalysis output—

numerical weather prediction models assimilated with

observations—and with reanalysis output combined

with observation-based weather products. Reanalysis

inputs are derived from the National Centers for Envi-

ronmental Prediction Climate Forecast System Re-

analysis (CFSR; Saha et al. 2010), which has been shown

to improve representations over previous reanalyses

(Higgins et al. 2010; Wang et al. 2011). CFSR simulates

the climate system using a coupled atmosphere–ocean

model with a sea ice component at a high T382 global

resolution [;38km, or ;(0.3138 3 0.3138)]. When run

in reanalysis mode, CFSR is constrained by subdaily

measurements related to atmospheric motion, satellite

radiances, oceanic temperature and salinity profiles, and
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sea ice concentration, made from weather stations,

satellites, and atmospheric platforms. CFSR uses ob-

served precipitation to simulate soil moisture and

temperature in its land surface model, but does not

directly constrain 2-m temperature or precipitation

themselves or cloud cover that affects solar radiation

(Saha et al. 2010). Because we simulate yields at 1/48
resolution, we regrid coarser climate inputs using

nearest-neighbor interpolation.

DSSAT requires, at minimum, four daily weather in-

puts: maximum and minimum temperature, precipitation,

and solar radiation. Temperature is used in part to model

crop development through growing degree-days (GDD), a

measure of accumulated growing-season temperature

above a defined baseline:

accumulatedGDDi,t 5 �
t

n50

Ti,n
mean 2T

base

5 �
t

n50

Ti,n
min 1Ti,n

max

2
2T

base
, (2)

where t indicates day of the growing season, n5 0 is the

start date of the GDD calculation, and T is the mean,

minimum, maximum, or baseline daily temperature

(8C). (ForDSSATmaize,Tbase5 88C.) DSSAT does not

directly use daily mean temperature in simulations but

estimates Tmean through Tmax and Tmin variables for

GDD calculations.

In our analyses CFSR is the default for all climate

variables, but in different simulations we manipulate

CFSR by either substituting observation-based products

for individual input variables, bias correcting the CFSR

variables, or both (Table 1). In our notation we identify

simulations involving data substitution with subscripts:

1p, 1s, and 1p, s describe substitution of observation-

based precipitation, solar radiation, or both variables,

respectively. We identify simulations involving a bias

correction by the prefix ‘‘Ag,’’ as in ‘‘AgCFSR.’’

Substituting individual variables may affect multivari-

able correlations, but such practice is common so an

assessment is critical.

Observational precipitation is taken from the Climate

Prediction Center U.S. Unified Precipitation, version

1.0, dataset (hereinafter CPC). CPC precipitation is

derived from ;8000 U.S. rain gauge stations from 1980

to 1991 and;13 000 from 1992 to 2009. Station data are

interpolated to a uniform 1/48-resolution grid using the

Cressmanmethod (Cressman 1959), a distance-weighting

interpolation. Observational solar radiation is taken from

the NASA/GEWEX Surface Radiation Budget project

(hereinafter SRB; Stackhouse et al. 2011), which is shown

to compare favorably to U.S. weather station measure-

ments (White et al. 2011). The availability of satellite data

limits SRB output to years 1984–2007 with global cov-

erage at 18 3 18 resolution. We use solar radiation output

from CFSR for years 1980–83 and 2008–09 in order to

analyze yields over the full 30-yr period where all other

data products are available.

The bias correction we use (AgCFSR; Ruane et al.

2014a) was developed as part of AgMIP to provide

consistent temporal and spatial coverage over the

world’s agricultural regions during the 1980–2010 pe-

riod. AgCFSR relies on CFSR as its base daily weather

and incorporates information from several other datasets.

AgCFSR pegs monthly mean temperature to an ensemble

of 1/28 3 1/28 gridded station datasets [Climatic Research

Unit (CRU;Harris et al. 2014) andUniversity ofDelaware

Willmott–Matsuura (WM; Willmott and Matsuura 1995)]

and imposes the average monthly diurnal cycle from

CRU. A similar procedure is followed for precipitation

[utilizing gauge-based products from CRU, WM, and

Global Precipitation Climatology Centre (GPCC);

Schneider et al. 2011], although additional resolution is

provided by imposing 1/48 3 1/48monthly average spatial

TABLE 1. DSSAT simulations with different climate inputs, including production-weighted 30-yr growing-season average climate

variables and corresponding yields. (See text for description of simulations.) Quotationmarks indicate the same value as noted above. The

Tmean is the average of Tmax and Tmin, as defined by DSSAT for measuring crop growth progress. Climate averages may vary for simu-

lations with the same input source because growing seasons are not fixed. (DSSAT determines growing seasons on the basis of cumulated

temperature and soil moisture, which may differ across simulations.) Yields vary by610% across different choices of climate inputs. We

approximate DSSAT management circa 2000 when NASS yields are ;8.6 t ha21, but we do not expect an exact match to NASS. De-

trended and normalized NASS yields have a mean of ;7.9 and std dev of ;0.7. Overbars indicate mean quantities.

Climate source Tmean Tmax Tmin Precipitation Solar Yield s

Simulation Temperature Precipitation Solar (8C) (8C) (8C) (cm) (Wm22) (t ha21) (t ha21)

CFSR CFSR CFSR CFSR 21.0 27.5 14.4 36.9 262 8.1 1.9

CFSR1s CFSR CFSR SRB ’’ ’’ ’’ ’’ 243 8.1 1.8

CFSR1p CFSR CPC CFSR 20.9 27.4 ’’ 42.6 262 9.4 1.6

CFSR1p,s CFSR CPC SRB ’’ ’’ ’’ 42.7 243 9.3 1.5

AgCFSR AgCFSR AgCFSR AgCFSR 20.7 27.1 14.2 42.1 238 10.0 1.2

AgCFSR1p AgCFSR CPC AgCFSR ’’ ’’ ’’ 42.8 ’’ 10.1 1.2
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patterns from an average of three high-resolution

precipitation products (Huffman et al. 2007; Hsu

et al. 1997; Joyce et al. 2004). (Because CRU,WM, and

GPCC are limited tomonthly aggregates, we do not use

them as direct inputs to pDSSAT.) The number of

rainy days is then adjusted to match CRU, with the

driest days removed first when CFSR indicates too

many rainy days and small rainfall totals added to the

cloudiest days when CFSR indicates too few rain

events. Finally, AgCFSR replaces CFSR solar radiation

with SRB output, and adjusts CFSR over the missing-

data period (i.e., 1980–83, and 2008–10) according to

distribution fits from the 1984–2007 SRB output. (Note

that we do not adjust CFSR solar radiation over the

missing-data period for the SRB output used in CFSR1s

and CFSR1p,s simulations, but do compare results over

the entire time period.)

CFSR reanalysis output generally reproduces tempera-

ture well over the regions and seasons most relevant to

maize yields but shows biases in precipitation and solar

radiation (Table 1 and supplementary Fig. S2). The 30-yr

average national maximum andminimum temperatures in

CFSR differ from AgCFSR by ;0.48C, and mean tem-

peratures follow this pattern. Annual temperatures in

CFSR, however, can differ from AgCFSR by up to;28C.
While CFSR accurately reproduces annual deviations in

solar radiation from trend, it uniformly overestimates U.S.

mean insolation by;20Wm22, or;10% (Fig. S2). CFSR

also underestimates 30-yr average U.S. precipitation by

;6cm per growing season, or ;15%. In an individual

year, growing-season precipitation errors can reach 20cm,

or ;50%. (Fig. 1a). AgCFSR improves on precipitation

and solar radiation variables, with year-to-year national

estimates nearly identical to observation-based products

(Fig. S2).

Last, we use station measurements not as inputs to

pDSSAT but to provide a ground-truth comparison of

the precipitation products used in this study (CFSR

FIG. 1. Interannual variations in 1980–2009 U.S. (a) precipitation and (b) maize yields for DSSAT simulations with various climate inputs.

All data are weighted by harvested maize hectares and averaged over the growing season, and all yields are detrended and normalized.

Detrended NASS survey yields are shown in black. Total dollar deviations on the right axis are calculated using 1980–2009 national average

maize harvested hectares and a fixed price of maize around 2010 values ($204 per metric ton). For reference, 2010 NASS yields were

;9.6 t ha21 with a total production value of ;$64 billion (;$70 billion in 2014 dollars). Variations in yield are largely correlated with

variations in precipitation. Simulations do not capture yield losses from 1993 flood. (See section 3c for a discussion.)
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reanalysis, AgCFSR bias-corrected reanalysis, and CPC

gridded station data). Because CPC and CRU products

are interpolated and not original data, we compare

with raw U.S. station measurements from the Hadley

Centre Integrated Surface Database (HadISD), version

1.0.1.2012p (Dunn et al. 2012), where less than 1% of

growing-season precipitation data are missing (totaling

157 of 1212 stations). Note that some (if not all) of these

stations are likely also used to generate the CPC dataset,

but precipitation estimates can differ because of station

interpolations.

3. Analysis

a. Simulated yield means and interannual variations

The choice of climate inputs significantly affects mean

simulated maize yields, with different choices altering

national production-weighted yields by ;25% (8.1–

10.1 t ha21; Table 1). Changes result primarily from

differences in precipitation inputs; yields are negligibly

sensitive to differences in insolation despite significant

disparity between sources. (Little sensitivity for solar

radiation means normalization across climate variables

would have minimal effect.) Because we simulate fixed

management practices, the absolute magnitudes of

simulated yields are not directly useful for validation,

but the yield differences from trend highlight the sen-

sitivity of pDSSAT yields to climate inputs. [For direct

comparison of pDSSAT output with absolute NASS

yields, see Elliott et al. (2013).] Interannual variations in

simulated national-average yields suggest again that the

dominant factor driving yield differences is pre-

cipitation. (See Fig. 1 and supplementary Fig. S3 for

results using Penman–Monteith and Priestley–Taylor

estimates of evapotranspiration, respectively, and see

Fig. S2 for equivalent figures of other climate variables.)

Interannual variations in simulated yields closely follow

interannual differences in precipitation inputs (corre-

lation coefficients of 0.7–0.8).

The sensitivity to precipitation means that increased

fidelity of precipitation inputs improves simulation

estimates of interannual fluctuations in maize yield.

Driving simulations with unaltered reanalysis output

(CFSR) produces average absolute difference from

detrended and normalized national NASS yields of

;1.30 t ha21 (Fig. 1b). Using reanalysis combined with

some form of observational precipitation reduces this

average difference by 40%–60%: average differences

from NASS in simulations using observation-based

precipitation (CFSR1s) and bias-corrected reanalysis

(AgCFSR) are;0.84 and;0.53 t ha21, respectively. (For

reference, themean and standard deviation of detrended,

normalized NASS yields are 7.9 and 0.7 t ha21; see

Fig. S1.) In a single year, using observation-based pre-

cipitation can reduce yield difference from NASS by

more than 2 t ha21 (over 20% of total yield), which when

averaged over all U.S. production has a value of ;$10

billion in 2010 dollars (Fig. 1b, right axis). Differences in

simulations driven by AgCFSR and CPC precipitation

(i.e., AgCFSR and AgCFSR1p) are small because pre-

cipitation inputs are similar. Note that in all cases,

pDSSAT simulations produce stronger interannual vari-

ations in yield than is seen in historical data (see

section 3d).

The benefits from using observation-based pre-

cipitation for agricultural impacts assessments become

more evident when yields are considered at the county

level (Fig. 2, which shows correlation coefficients be-

tween simulated and NASS interannual yield variations).

Simulations driven with reanalysis inputs are unable to

reproduce historical yield variations in the regions where

most maize is grown (i.e., correlation coefficients are low

in the Corn Belt). Precipitation plays an especially sig-

nificant role in this region, since maize cultivation is

almost entirely rainfed. (In contrast, cultivation west

of the Corn Belt in, e.g., Nebraska, is largely irri-

gated. Irrigated yields, especially after detrending,

show little interannual variation so correlations be-

tween modeled and NASS yields are generally low.)

While substituting reanalysis with observation-based

solar radiation has little impact, substituting reanalysis

with observation-based precipitation leads to large in-

creases in correlation coefficients across the United

States (supplementary Fig. S4).

To demonstrate that changes in precipitation do in

fact drive most of the improvements in simulated in-

terannual yield variations, we compare differences in

the various climate variables between each simulation

scenario and the default CFSR with the resulting dif-

ferences in yield. That is, we compare spatial patterns

between differences in time-averaged county climate

and yield. Differences in precipitation inputs are spa-

tially correlated with differences in yield, as expected

(Fig. 3). Observed precipitation is higher in the Corn

Belt and lower in the Southeast than precipitation in

CFSR, so using any observation-based precipitation

source produces higher yields in the Corn Belt and lower

yields in the Southeast. (See Fig. 3 for AgCFSR and

supplementary Fig. S5 for CFSR1p,s cases.) Patterns of

yield change differ from those of insolation and mini-

mum temperature, suggesting that those variables play a

less significant role. (Note that because CFSR solar ra-

diation is consistently biased high, differences in pre-

cipitation and solar radiation may not correlate.) The

fact that precipitation differences account for most of

the differences in yield variation is borne out by
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examining coefficients of determination R2 of 1) dif-

ferences in a given climate variable between a simu-

lation scenario and the default CFSR and 2) the

resulting differences in yield. (Here, climates and

yields are nationally averaged and weighted by maize-

growing regions, dominated by rainfed yields in the

Corn Belt.) Precipitation and yield differences are

highly correlated with R2 ; 0.8 for all simulations

(Table 2).

The influence of temperature is more difficult to

quantify, since we do not consider scenarios where

temperature alone is altered from reanalysis (because

reanalysis temperatures tend to bemore accurate). In the

AgCFSR and AgCFSR1p simulations, both temperature

and precipitation differ from CFSR. For these simula-

tions, differences in maximum temperature are well

correlated with differences in yield (R2 ; 0.7 in Table

2), but this relationship may not be causal, as differ-

ences in maximum temperature are spatially correlated

with those in precipitation (Fig. 3). It is not possible

from these simulations alone to disentangle the relative

importance of precipitation and temperature inputs for

maize yields, since both inputs differ across simula-

tions. We can, however, isolate and assess the impor-

tance of temperature inputs by comparing the CFSR1p,s

and AgCFSR1p simulations, since these essentially

only differ in temperature (see section 3b). In the na-

tional production-weighted yield time series shown in

Fig. 1, the bias-corrected temperatures in AgCFSR1p

reduce the average absolute differences from national

NASS yields by;0.28 tha21, or;30% [i.e., (DCFSR1p,s2
DAgCFSR1p)/DCFSR1p,s, where D indicates the time

average of the absolute differences from NASS]. Most

of that effect appears related to differences in maximum

temperature (R2 ; 0.7 in Table 2) rather than minimum

temperature (R2 , 0.2). (The greater importance of

maximum than minimum temperature is consistent with

spatial patterns in Fig. 3.) Higher correlation with maxi-

mum temperature is not surprising. Maximum tempera-

tures typically occur during the day when photosynthesis

is at its peak. Maximum temperatures also appear to

drive high correlations for mean temperature, which

largely control crop development.

b. Rainfall distribution

Because precipitation appears the dominant cli-

mate factor driving uncertainty in yield estimates, it is

worth considering which aspects of precipitation

datasets are most significant for yields. In our study

we drive pDSSAT with two observation-based pre-

cipitation sources: 1) CPC gridded rain gauge measure-

ments (AgCFSR1p), and 2) AgCFSR bias-corrected

reanalysis precipitation (AgCFSR). CPC and AgCFSR

have nearly identical rainfall averages (Fig. 1a), but distri-

butions are quite different (supplementary Fig. S6a). That

distinction allows us to evaluate the relative importance of

precipitation means and distributions for making yield

estimates.

We compare the rainfall distributions in CPC and

AgCFSR with those of 168 U.S. weather stations de-

scribed in section 2b, using the number of rainy days as

our metric of comparison (Fig. 4). If station data are

taken as ground truth (averaging ;40 rainy days per

growing season), then the bias-corrected AgCFSR

tends to underestimate precipitation frequency (by ;8

rainy days per growing season). (For comparison, the

non-bias-corrected CFSR has the well-known excess

‘‘drizzle problem’’ and overestimates precipitation

frequency by ;26 rainy days per growing season; see

supplementary Fig. S7). The observation-based CPC

(version 1.0) precipitation dataset also has a large

drizzle problem and overestimates precipitation fre-

quency by ;22 rainy days per growing season. The

discrepancy likely arises in the distance-weighting

FIG. 2. Correlations between annual modeled and observed yield over years 1980–2009. Aggregation is at the county level, and gray

regions indicate counties with ,0.1% of land harvested for maize. (left) Correlations between CFSR and surveyed yield are neutral to

weakly positive, especially in maize-growing regions (with black outline marking counties with$1/4 of land harvested for maize). (right)

Bias correction significantly improves estimates in the Corn Belt, where most maize is rainfed.
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interpolation used by CPC to convert spatially het-

erogeneous station data to a uniform grid, which

smears rainfall events across stations. The technique

has been shown to produce erroneous assumptions of

many days with low-intensity precipitation (Ensor and

Robeson 2008), and the CPC precipitation distribution

is consistent with that of spatially averaged station data

(Fig. S6b). As a consequence, CPC and AgCFSR pre-

cipitation distributions differ on average by ;30 rainy

days, one-quarter of the growing season.

Simulated U.S. maize yields are, however, largely in-

sensitive to rainfall distributions. For aggregate U.S.

yields, the distinction between AgCFSR and AgCFSR1p

does not seem relevant (Table 1 and Fig. 1). However,

there may be situations where the differences are im-

portant. We therefore evaluate the sensitivity of yields to

the number of rainy days for subsets of the data with

different total growing-season precipitation (Fig. 5).

(Total precipitation scales monotonically with the

number of rainy days.) In cases where growing-season

precipitation exceeds 20 cm, only a negligible fraction

(R2 , 0.05) of yield variation between AgCFSR and

AgCFSR1p can be explained by differences in esti-

mated number of rainy days. If total growing-season

precipitation is less than 20 cm, the number of rainy

days becomes significant (R2 . 0.6). Aggregate na-

tional yields are largely unaffected by differences in

precipitation distributions because most U.S. counties

experience at least 20 cm of precipitation per growing

season (Fig. 5, red line). Our results suggest that agri-

cultural assessments of more arid regions are likely

more sensitive to precipitation inputs.

c. Estimating extremes

The sensitivity of mean yields to accurate pre-

cipitation inputs may have implications for reproducing

extreme events. We calculate the probability of a

FIG. 3. Differences in 1980–2009 growing-season-averaged bias-corrected and original reanalysis climate indices (AgCFSR 2 CFSR)

and resulting yields. Yields here are not detrended or normalized. The Corn Belt is outlined in black, where most maize is rainfed. Gray

regions denote counties with ,0.1% of land harvested for maize. Spatial patterns in yield differences are similar to precipitation dif-

ferences; a wetter AgCFSRMidwest correlates with higher yields. Yield differences are inconsistent withminimum temperature and solar

radiation distributions.

TABLE 2. Coefficients of determination of differences between

each simulation and CFSR in 1980–2009 national average yield and

climate. National averages are production weighted, and yields are

not detrended or normalized. The R2 values can be thought of as

the fraction of yield change variation that can be described by

changes in climate inputs from standardCFSR; these are not shown

where simulations use the same climate source (e.g., CFSR and

CFSR1p use the same temperature and solar radiation sources).

Changing growing-season precipitation explains most of the vari-

ation in yield change. Correlations between temperature/

precipitation and solar radiation inflate AgCFSR and AgCFSR1p

solar radiation R2 values.

Dyield variation

Simulation DTmean DTmax D Tmin Dprecipitation Dsolar

CFSR1s — — — — 0.005

CFSR1p — — — 0.841 —

CFSR1p,s — — — 0.789 0.025

AgCFSR 0.568 0.670 0.143 0.825 0.337

AgCFSR1p 0.572 0.662 0.163 0.786 0.354
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simulation to detect a year containing one of the worst

five yields among the 30 years from 1980 to 2009 NASS

county data (hereinafter bottom-five year). We assess

only the ability of a model simulation to detect the oc-

currence of a bottom-five year and disregard the order of

bottom-five year and the magnitude of yield loss. We do

not expect any model to perfectly detect all extreme

events. To validate results from this bottom-five ap-

proach, we also calculate the probability of detecting

yield events more than one standard deviation from the

30-yr mean (see the supplementary material for a dis-

cussion). Our model can capture large-scale maize re-

ductions attributed to droughts and heat waves (Elliott

et al. 2013); numerous other factors (e.g., floods and

pests) can also cause, or contribute to, large-scale losses.

We find that crop yield simulations driven by

observation-based precipitation are better able to capture

extreme losses in yield. On average, simulating yields with

observation-based rather than reanalysis precipitation

improves the ability to detect a bottom-five year by.10%,

with CPC providing a slight advantage over AgCFSR

(Fig. 6a). Spatially, simulating yields with observation-

based AgCFSR rather than reanalysis improves extreme

event detection in the Midwest by up to ;60% (Fig. 6b).

This improved performance holds only in rainfed maize

areas, suggesting again that precipitation is the dominant

climate factor.

We also separate extreme events by year tomore closely

analyze drivers of yield loss and specific large-scale his-

torical events (Fig. 6c). All simulations correctly identify

the drought of 1988 as a bottom-five year, but those driven

with reanalysis output do not identify the 1983 Midwest

drought. (The drought in 1988 was much more severe and

widespread than the drought in 1983.) Observation-based

precipitation provides similar (but smaller) improvements

in the less damaging droughts of 1991 and 2002. Detection

benefits are due to precipitation alone; use of observation-

based solar radiation or maximum–minimum temperature

has little consequence for detecting any single extreme

event. (See Fig. 6c; for precipitation compare CFSR and

CFSR1p, for solar radiation compare CFSR and CFSR1s,

and for temperature compare CFSR1p,s and AgCFSR1p.)

These results are robust to the definition of extreme loss

(see supplementary Fig. S8 for an analogous analysis de-

fining extremes as yields of more than one standard de-

viation from the county mean). Note that no simulation

FIG. 4. Mean growing-season rainy days from station observations for 1980–2009, and differences from AgCFSR/CPC datasets. Rainy

days are tallied for daily precipitation$0.1mm over the growing season as defined by AgCFSR yield simulations. Dots are colored and

scaled by magnitude. (a) Stations are selected only where#1% of growing-season rainfall is missing; the average across all 157 stations is

;40 rainy days. (b) AgCFSR underestimates the number of rainy days, and (c) CPC overestimates the number of rainy days. Average

error of CPC is about triple that of AgCFSR.
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captures the extreme events in 1993 and 1995. Losses in

1993 were due to flooding, which is poorly represented in

DSSAT, and those in 1995 resulted from a complex series

of non-precipitation-related factors.

d. Fundamental issues with model response

Crop models, like climate models, may have system-

atic biases in yield estimations. In the simulations dis-

cussed here we assume fixed management without

technological trends, and therefore inherit trend biases

in our yield simulations. To compare modeled and ob-

served yields on similar terms, we detrend and normal-

ize NASS and modeled yields. Examination of the

detrended time series suggests, however, that the crop

model simulations also include some type of variance

bias, since crop model output appears overly sensitive to

interannual climate variability (Fig. 1b). All simulations

overestimate the magnitude of yield changes in anom-

alous years, even after aggregating to national levels

where finescale errors are likely to cancel. This over-

sensitivity is clearest when large-scale drought reduces

yield. In the most damaging drought in 1988, simulated

national yield reductions from the trend line are about

twice as large as actual reported losses in NASS yields.

To investigate the nature of the model response to

changes in climate and to test results under more re-

alistic representations of interannual variability, we ar-

bitrarily adjust the interannual variance in yields in each

simulation to match that of NASS. [For comparison of

variability in modeled and NASS yields, see Table 3,

column 1; for variance-adjustmentmethodology, see Eq.

(1).] This manipulation is purely exploratory: we do not

evaluate different variance-adjustment methodologies,

nor do we seek to make recommendations. It is in-

formative to note, however, that applying a simple

variance adjustment improves yield estimates in ex-

treme years (Figs. 7 and S3b). Variance adjustment

roughly halves differences in 30-yr average simulated

national yields relative to NASS yields (Table 3, col-

umn 2). For the AgCFSR simulation, variance correc-

tion lowers mean yield error to ;0.4 t ha21, or ;5% of

mean normalized NASS yields. Variance adjustment

also reduces yield differences between model simula-

tions. After variance adjustment, the intermodel spread

of simulated yield averages is only ;0.1 t ha21. There-

fore, for the 1988 drought, variance adjustment al-

most entirely eliminates errors by all simulations in

the magnitude of national yield reduction. Regard-

less of the absolute size of yield variance, results

stand that observed precipitation inputs improve corre-

lations between simulated and NASS yields (Table 3,

column 3).

4. Discussion

a. Evaluating reanalysis

Our results suggest that driving cropmodels with non-

bias-corrected reanalyses cannot reliably reproduce

historical observational yields, confirming findings from

previous studies (van Wart et al. 2013; Berg et al. 2010;

FIG. 5. Coefficients of determination of differences in growing-season county yield and number of rainy days in AgCFSR and

AgCFSR1p. AgCFSR1p uses CPC precipitation; all other climate variables are identical to AgCFSR. Counties are binned by AgCFSR

growing-season precipitation in 2-cm increments for the easternUnited States only (where each year within a given county is considered to

be a separate ‘‘event’’). Yield is defined as potential rainfed yield to highlight themodel response to rainy days. Total rainfall between both

simulations is similar (light blue). Differences in number of rainy days describes most of the differences in local annual yield only when

total rainfall is low (black), even though differences in estimated number of rainy days are largest when total rainfall is high (dark blue).

National average yields in AgCFSR and AgCFSR1p are insensitive to differences in the number of rainy days because most counties

experience rainfall totals of approximately 20–60 cm season21 (red).
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Challinor et al. 2005). At the county level, year-to-year

variations in reanalysis-driven maize yield simulations

are largely uncorrelated with variations in surveyed

yields (Fig. 2). At the national level, using reanalysis

produces errors in production estimates of up to ;30%

of the 2010maize production value (Fig. 1). These errors

are likely a lower limit in the context of a global as-

sessment. Reanalyses and bias-correction datasets may

have lower accuracy in the developing world where

constraining observational datasets are less available

(Ruane et al. 2014a).

While reanalyses poorly capture interannual varia-

tions in patterns of both precipitation and insolation

(Figs. 1a and S2), only improvements in precipitation

appear to be significant for yield estimates (Figs. 1b, S3,

S4, and Table 3). CFSR insolation is biased ;10%

high (for national average weighted by maize pro-

duction), but substituting observation-based values

in crop simulations negligibly alters maize yields. CFSR

precipitation is biased on average ;14% low, and sub-

stituting observation-based values in crop simulations

increases yields significantly. [Note, however, that other

reanalyses may better constrain precipitation (e.g.,

Reichle et al. 2011).] Simulating yields with observation-

based rather than reanalysis precipitation also improves

the ability to detect extreme years with high crop losses

(Fig. 6). Extreme droughts are linked to some of the most

severe large-scale losses in U.S. maize since 1980 (1983,

1988, and the recent drought of 2012, not simulated here).

The fidelity of models in capturing these anomalous

FIG. 6. Probability of detection of bottom-five yielding years over the 30-yr period for each county in the NASS observational record.

For comparison to NASS, all yields are detrended. Here we identify the number of years in each county that a yield simulation correctly

identifies as a bottom-five yielding year (where bottom-five year order is unimportant). (a) PDF of all counties weighted by 30-yr average

NASS production, and equivalent number of unweighted counties on right axis. (b) AgCFSR accurately identifies 1–2 more bottom-five

yielding years than CFSR in the Corn Belt region (outlined in black), where most maize is grown. (c) Bottom-five yielding years for all

counties, production weighted and binned by year. Tan boxes denote the total counties identified as a bottom-five yield year in the NASS

record, and the non-tan colored boxes denote correct detections for eachmodel simulation. Perfect detection wouldmean tan and colored

boxes are the same. Simulations driven with improved precipitation estimates are better able to detect yield reductions caused by

a Midwest drought.
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historical events may be a guide to their reliability in

projecting yield changes in future scenario simulations

under changing climate. Note that the quantitative ben-

efit of improved precipitation shown here is robust de-

spite the oversensitivity of the crop model to interannual

climate variations (Table 3, column 3).

We also show that results are insensitive to the repre-

sentation of modeled evapotranspiration. Use of either

the Penman–Monteith method or the Priestley–Taylor

method produces similar results. (See Fig. 1 for results

using the Penman–Monteith method and Fig. S3 for re-

sults using the Priestley–Taylor method.) Priestley–

Taylor simplifies the Penman–Monteith representation

by negating the need for wind observations yet produces

yields that are nearly as reliable in reproducing in-

terannual variations. This consistency suggests that ac-

curate wind measurements are likely a second-order

concern for U.S. agricultural assessments.

b. Incorporating climate observations

One alternative to reanalysis is bias-corrected re-

analysis, which improves yield estimates significantly

(Figs. 1 and 2). Previous studies also find improvements

when bias correcting reanalysis (Challinor et al. 2005;

Berg et al. 2010). [Similarly, de Wit et al. (2010) find no

significant difference in yield estimates driven by par-

tially bias-corrected reanalysis and interpolated station

data but do not test the case of bias correcting pre-

cipitation variables or compare with yields driven by

non-bias-corrected reanalysis.] While bias correction

does rely on observational data, it can make use of

monthly rather than daily data. For the purpose of ag-

ricultural applications, broader coverage of incomplete

but accessible stations is likely more useful than a lim-

ited network of complete daily stations, as this would

allow sufficient overlap to enable gap-filling approaches

using the types of blended model and observational

datasets that have proven successful here.

Translating station observations to inputs suitable for

gridded crop models can also introduce interpolation

errors (Lobell 2013), but we find that yield estimates are

mostly insensitive to these errors. We show that CPC

rainfall frequency errors (caused by distance-weighting

interpolation) only marginally affect U.S. maize yield

estimates (Figs. 4 and S6). [See also Ensor and Robeson

(2008) for assessment of CPC rainfall frequency errors.]

Berg et al. (2010), however, find that rainfall frequency

errors are important for estimating westernAfricamillet

yields. We expand on these results and suggest that

rainfall frequency errors may be important only in arid

regions or seasons with severe drought (Fig. 5). For as-

sessments in arid regions or seasons with severe drought,

precipitation products like CPC may therefore benefit

from an additional step in their interpolation schemes to

adjust rainfall frequencies to better match observations.

In fact, a more recent version of CPC uses the updated

optimal interpolation algorithm to improve estimates

from using the Cressman interpolation methodology

(Xie et al. 2007).

c. Crop model limitations

Unlike studies that do not compare cropmodel output

to observed yields (e.g., van Wart et al. 2013), we can

distinguish errors related to the model representation of

yield response from those related to climate inputs. Our

results indicate that yield estimates suffer from prob-

lems related to the crop models themselves. In our ex-

periments, pDSSAT is oversensitive to interannual

changes in growing conditions (Fig. 7 and Table 3),

likely meaning that pDSSAT exaggerates yield re-

sponses to precipitation changes in rainfed regions.

(Both simulated and observed interannual yield vari-

ability are small in highly irrigated regions.) This re-

sponse may be due to structural limitations but more

likely results from simplified management inputs. In our

experiment, planting dates are fixed within a narrow

timewindow. In reality, farmersmay respond to year-to-

year weather or may minimize risk by diversifying

planting dates and seed types at subfield scales to miti-

gate harms from extreme events. Note that we do not

believe the oversensitivity in our pDSSAT output is due

to excessively high row densities, which have been

shown to increase crop sensitivity to drought (Lobell

et al. 2014). First, we assume a relatively low crop den-

sity (5 plants per meter squared); second, crop yield re-

sponses to both high and low precipitation are

amplified. Understanding crop responses to manage-

ment changes, as well as methods to represent man-

agement must become a research priority.

TABLE 3. Variance comparison between modeled and NASS

survey national yields for years 1980–2009. CV ratio 5
(smodel/sNASS)3 (mNASS/mmodel), where sNASS is defined as the

variance of the detrended sample. After variance adjustment, all

modeled yields have similar average errors from NASS. Explained

varianceR2 metrics (which do not changewith variance adjustment)

show large improvements in yield estimates when substituting

reanalysis with observation-based precipitation.

Simulation CV ratio Avgjerrorja R2

CFSR 2.63 0.55 0.18

CFSR1s 2.60 0.54 0.20

CFSR1p 1.88 0.45 0.38

CFSR1p,s 1.85 0.45 0.39

AgCFSR 1.36 0.43 0.47

AgCFSR1p 1.35 0.42 0.49

a Units: metric tons per hectare.
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Our simulations also point out several additional

shortcomings in crop growth representation. All yield

simulations fail to capture extreme events in 1993 and

1995 (Fig. 6c). In 1993, extreme precipitation through-

out the Midwest led to floods and waterlogged soils,

resulting in root death and low yields (Rosenzweig et al.

2002). Capturing flood effects in a point-based model is

difficult in the absence of information about the wider

basin hydrographs or damage from submergence and

rushing water. It is therefore not surprising that all

simulations overestimate 1993 yields. In 1995, a number

of factors caused low yields: early spring flooding led to

late planting and a shorter growing season, the timing of

anthesis coincided with extreme heat, and corn borer

pests were widespread (Elmore and Taylor 2013; Ostlie

et al. 1997). Because we used fixed planting periods, we

do not capture the shortened growing season and sub-

sequently miss damages from the heat event near the

crucial flowering stage. Resolving pest damages would

have required a coupled or integrated pest model, which

was not included in this study. The 1993 and 1995 biases

again point out the importance of using more realistic

dynamic management inputs, and also the need to im-

prove intrinsic issues in the representation of flood and

pest damage.

5. Conclusions

Our results suggest that care must be taken to avoid

compromising historical agricultural validations by

any of several factors: precipitation inputs, manage-

ment inputs, and model limitations in representing

effects from floods, pests, and extreme heat. We show

that bias correcting precipitation is important, but

the data needs for bias correction are not overly tax-

ing, since correction methods can make use of

monthly climatologies instead of daily observations.

When our results are combined with previous studies,

the need for bias correcting precipitation appears rel-

atively robust across crop models and global regions

FIG. 7. Times series plots of 1980–2009U.S.modeled andNASS surveymaize yields. (a) Yields are normalized and detrended to remove

technological and management changes present in the survey data. (b) As in (a), plus yields are variance adjusted to remove errors in the

modeled yields’ sensitivity to changes in weather. [See Eq. (1) for variance-adjustment methodology.] Note that (a) is identical to Fig. 1b

and is shown here only for comparison. Variance-adjusting model output significantly reduces differences between simulated and ob-

served yields and between simulation scenarios.
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(Challinor et al. 2005; Berg et al. 2010). International

collaborative efforts are ongoing to further evaluate

available weather products and identify appropriate

correction/aggregation techniques for this purpose

(Elliott et al. 2015; Ewert et al. 2015). Improving

management inputs and reducing model limitations

is a longer-term project, but efforts are also ongoing

here. Simulation of damages from anthesis heat waves

and pests (such as those experienced in 1995) are areas

of particular focus for model improvement in AgMIP

(e.g., Asseng et al. 2015).

Historical validations suggest that model errors could

compromise future projections.Multimodel means from

phase 5 of the Coupled Model Intercomparison Project

(CMIP5) archive forecast higher annual average pre-

cipitation in the U.S. Corn Belt and robustly predict

increases in precipitation intensity (IPCC 2013). Making

agricultural projections in such a wetter future using a

model that is oversensitive to precipitation changes (and

undersensitive to flooding damages) would lead to

overestimates of future yields. DSSAT, the focus of the

study presented here, is one of most widely used agri-

cultural models, but many others are also commonly

used to make future projections [e.g., Agricultural Pro-

duction Systems Simulator (APSIM), Environmental

Policy Integrated Climate (EPIC), or Lund-Potsdam-

Jena Managed Land (LPJmL)]. It is critically important

to similarly assess their performance. Some of this as-

sessment is currently under way in AgMIP, which in-

cludes efforts to evaluate multimodel sensitivities and to

improve the climatological responses of modeled maize

(Bassu et al. 2014; Ruane et al. 2014b; McDermid et al.

2015). These continued efforts are especially timely

because reliable crop growth representations are vital

for decisions on policy and adaptive responses to future

climate conditions.
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