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Abstract. We develop a numerical method for computing all pure strategy subgame-
perfect equilibrium values of dynamic strategic games with discrete states and actions.
We define a monotone mapping that eliminates dominated strategies, and when applied
iteratively, delivers an accurate approximation to the true equilibriumpayoffs of the under-
lying game. Our algorithm has three parts. The first provides an outer approximation to
equilibrium values, constructed so that any value outside of this approximation is not
an equilibrium value. The second provides an inner approximation; any value contained
within this approximation is an equilibrium value. Together, the two approximations
deliver a practical check of approximation accuracy. The third part of our algorithm deliv-
ers sample equilibrium paths. To illustrate our method, we apply it to a dynamic oligopoly
competition with endogenous production capacity.
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1. Introduction
Analysis of strategic decision making is one of the fun-
damental areas of focus in economics. Static, repeated,
and dynamic games are usedwidely in industrial orga-
nization, international trade, behavioral economics,
macroeconomic policy making, and political econ-
omy. One of the issues that complicate their analy-
sis is multiplicity of equilibria. This problem arises
frequently in repeated games, and is more severe in
dynamic games where the environment in which the
strategic interaction takes place changes over time. To
reduce the complexity of the analysis, economists have
traditionally restricted strategies or chosen equilibria
with certain features such as symmetry, stationarity, or
Pareto optimality. In this paper, we take an alternative
approach. Rather than focusing on reducing the multi-
plicity problem, we introduce a numerical method for
computing all subgame-perfect equilibria of dynamic
games with discrete states. We then apply this method
to an oligopoly competition with endogenous produc-
tion capacity and illustrate how it can be used in the
analysis of such a dynamic game.
Specifically, we consider games with an infinite hori-

zon, discrete states and actions, and with perfect mon-
itoring where all players observe the entire history of
the game, including actions of all other players. Addi-
tionally, players’ actions affect the state of the world the

game is played in. As a first step, we formulate such
games in payoff space, rather than in action space, and
show that the subgame-perfect equilibrium (SPE) pay-
offs are supported by player actions consistent with the
Nash equilibrium in the current period and continua-
tion payoffs, that are themselves payoffs in some SPE in
the next period. These continuation equilibrium pay-
offs are drawn from equilibrium values consistent with
the evolution of the discrete state.

Our methodology builds on the influential papers of
Abreu et al. (1986, 1990) (APS) who developed tech-
niques for characterizing repeated games of incom-
plete information and Cronshaw and Luenberger
(1990, 1994) (CL) for repeated games of complete infor-
mation. Computational methods for approximating
the set of equilibria of repeated games with com-
plete informationwere developed byConklin and Judd
(1996) and Judd et al. (2003) (JYC). In this paper, we
extend the methods of APS, CL, and JYC to dynamic
games with discrete states and show that the collec-
tion of SPE payoffs of such games can be obtained by
repeated application of amonotonemapping that elim-
inates dominated strategies.

The practical implementation of our iterative
method requires an efficient approximation scheme for
equilibrium payoffs. In the first part of this paper, we
provide such a scheme for the class of dynamic games
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we study. We follow a long tradition in game the-
ory, starting with Fudenberg and Maskin (1986), and
convexify the dynamic game by introducing a pub-
lic randomization device. We then show that polygons
provide an efficient and consistent means of approx-
imating the equilibrium payoff set(s) from such con-
vexified games. Moreover, they enable us to obtain
two approximations to equilibrium values. The first,
called an outer approximation, is constructed so that
any value outside of this approximation is not an
equilibrium value. The second is an inner approxima-
tion; any value contained within this approximation is
an equilibrium value. Since the true equilibrium val-
ues lies between these approximations, the difference
between them provides us with an error bound for
gauging the accuracy of the procedure at each finite
iteration.1 Additionally, we provide an algorithm to
compute sample equilibrium paths that support equi-
librium values.

Our approach has several desirable features. First,
it is applicable to a large class of dynamic games that
arise naturally in industrial organization. Amongst
them are oligopoly settings with research and develop-
ment, advertising, learning by doing, capacity expan-
sion, market entry and exit, inventory management,
and technology adoption.2 Second, it allows us to do
comparative statics in value sets, for example, com-
pare equilibrium value sets across different discount
factors, technology, laws of motion for states and dif-
ferent forms of asymmetry between players. Third, it
allows us to verify whether payoffs of interest, such as
payoffs associated with collusive behavior or outcomes
of interest, such as emergence of a monopoly are sup-
ported in equilibrium. Fourth, by providing a range of
possible outcomes, it can shed light on policy interven-
tions that affect the strategic environment.
To illustrate our method, we apply it to a specific

dynamic game in industrial organization: oligopolis-
tic competition with endogenous productive capac-
ity. We choose this particular application because a
large literature in game theory and industrial orga-
nization investigates how firms use capacity strategi-
cally, for example, to deter competitors from entering
into the market or to ease tacit collusion. Due to the
complex nature of this dynamic game and the multi-
plicity of equilibria, it is common to employ simplify-
ing assumptions to make the problem more tractable.
These assumptions include choosing capacity once and
for all in the first period and/or restricting atten-
tion to symmetric Markov equilibria, or focusing on
the best (Pareto-optimal) equilibria.3 Although these
assumptions help simplify the analysis, they may also
eliminate equilibria of interest, while not substantially
reducing the multiplicity problem. We take an alter-
native approach and compute all SPE of this dynamic
game without such restrictions. We demonstrate how

equilibrium values change as discount factors, max-
imum attainable capacity, reversibility of investment,
and cost of production are modified. Since our method
delivers inner and outer approximations that together
"sandwich" the true equilibrium values, we show how
it can be used to rule in or rule out equilibrium out-
comes featuring tacit collusion, monopoly power, over-
investment or overproduction.

Section 2 describes the infinite-horizon game with
finite states and actions. Section 3 introduces our ap-
proximation method and provides details of our algo-
rithms. Section 4 applies our method to a dynamic
capacity game with endogenous capacity investment
and provides a selection of results from different
parameterizations of this game. Section 5 concludes.

2. Supergames with State Variables
We start our analysis by describing the dynamic game
with finite actions and finite states.

2.1. Histories and Strategies
N infinitely lived agents play a dynamic game. Let the
finite set Xi denote agent i’s set of states, and let X �

×N
i�1Xi denote the set of aggregate states of the game.

The game unfolds with simultaneous moves at each
stage where each player i chooses a perfectly observ-
able action ai from a finite set Ai . Elements of the
set A �×N

i�1Ai represent all possible combinations of
player actions and are called action profiles. An action
profile will be denoted by a. Additionally, we use the
standard notation a−i to refer to an action profile that
excludes player i. The state evolves deterministically
according to g: A×X→X, xt+1 � g(at , xt).4 Let Πi : A×
X→< be the current period payoff of player i.
We assume that for each player, the minimal and

maximal period payoffs in each state are bounded by
the scalars:

Πi � max
(a , x)∈A×X

Πi(a , x),

Π i � min
(a , x)∈A×X

Πi(a , x).

Note that these are well defined since the action space
is assumed to be finite.

The action space for the dynamic game is A∞.
Agent i’s average discounted payoffs from a specific
sequence of states and action profiles are

Ui(a∞ , x∞)� (1− δ)
∞∑

t�0
δtΠi(at , xt),

where δ ∈ (0, 1) is the common discount factor across
agents.5 A t-period history, h t , is a pair of sequences
({as}t−1

s�0 , {xs}t
s�0). Therefore agents know the entire his-

tory of actions taken by each player prior to the current
period and the aggregate states that realized prior to
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and including the current period. Let H t denote the
set of t-period histories. A pure strategy for player i
is a sequence of functions {σi , t}∞t�0 that map histories
to actions with σi , t : H t → Ai . A strategy profile is a
sequence of functions {σt}∞t�0, where σt maps from H t

to A. We use σ | h t to denote the continuation strategy
profile for the remainder of the game that follows the
history h t .
In each state x, the set of equilibrium payoffs is con-

tained within the compact set Ω � ×N
i�1[Π i ,Πi]. We

define P∗ as the set of all correspondences that map
each point in x ∈ X to some closed subset of Ω:

P∗ � {W : X⇒Ω}.

We now define a partial order on P∗ that we will use
throughout the paper. Consider two correspondences,
U,W ∈P∗. Let Ux denote the state x component of cor-
respondence U, and Wx the state x component of W .
Using set notation, we say U ⊆W if ∀ x ∈ X, Ux ⊆Wx .
Note that since X is finite, this partial order is well
defined.6

2.2. Equilibrium and Its Characterization
The equilibrium concept we employ for our dynamic
game is SPE. In a dynamic game, at any history,
the “remaining game,” called the subgame, can be
regarded as a game of its own. In dynamic games, the
Nash equilibrium is too permissive because it imposes
no optimality conditions in these subgames, opening
the door to violations of sequential rationality. Sub-
game perfection strengthens the Nash equilibrium by
imposing the sequential rationality requirement that
behavior be optimal in all circumstances (i.e., sub-
games), those that arise in equilibrium (as required
by the Nash equilibrium), and those that arise out of
equilibrium.

Definition 1. A strategy profile σ is a SPE if, for any his-
tory h t ∈H t ending in state x, the continuation strategy
σ | h t is a Nash equilibrium of the continuation game.

Now, we can formally define the SPE payoff corre-
spondence of our dynamic game.

Definition 2. Let V ∗ denote the correspondence that
maps the current state into the set of average dis-
counted payoffs that can be sustained in pure SPE.

In our formulation of this dynamic game, each
SPE payoff vector v ∈ V ∗ is supported by a profile
of actions a consistent with Nash play in the current
period and a vector of continuation payoffs w that are
themselves payoffs in some SPE. The key to finding
V ∗ involves defining an operator that maps future SPE
payoffs into current SPE payoffs.
We use the one-stage deviation principle for infinite-

horizon games, which provides a useful characteriza-
tion of SPE. This principle applies to games where

overall payoffs are a discounted sum of uniformly
bounded stage payoffs, as is the case in our setting.
Theorem 1. In a dynamic game with finite states and ob-
served actions, profile a is subgame perfect if and only if there
is no player i and strategy ãi that agrees with ai except at a
single t and h t , and such that ãi is a better response to a−i
than ai , conditional on history h t being reached.
Proof. See Fudenberg and Tirole (1991), Theorem 4.2.

An immediate consequence of the one-stage devia-
tion principle is that V ∗ is equivalent to the correspon-
dence that maps the current state into the set of average
discounted payoffs that can be sustained by strategy
profiles in which no player has a profitable one-stage
deviation. This constraint, known as the incentive com-
patibility constraint, is central to our analysis.
Incentive compatibility. In any Nash equilibrium,
player i must prefer the equilibrium action to any
alternative, given the equilibrium actions of the other
players. Suppose that W represents the set of possible
continuation values of the dynamic game with Wx the
state component of W . Also, suppose that in state x,
player i is supposed to play ai . Recall that a−i is the
action profile of all agents except for player i. The state
in the next period will be g(ai , a−i , x) and player i’s
continuation utility wi , g(a , x) has to be taken from the
set of possible values in state g(ai , a−i , x), Wg(ai , a−i , x).
If instead player i chooses ãi while the other play-
ers continue to play a−i , he earns a current payoff
of Πi(ãi , a−i , x) and the next period’s state will be
g(ãi , a−i , x). We assume that if a player deviates this
period, he will receive the smallest value given W ,
at next period’s state g(ãi , a−i , x). We denote the
worst payoff in the next period’s state by µi , g(ãi , a−i , x),W
with µi , g(ãi , a−i , x),W ∈Wg(ãi , a−i , x). We express the gain to
player i from playing ai and receiving a continuation
value of wi , g(a , x) in state x instead of playing ãi and
receiving continuation value µi , g(ãi , a−i , x),W as

ICx ,W (i , a , ãi ,w)
≡ (1− δ)Πi(ai , a−i , x)+ δwi , g(a , x)

− ((1− δ)Πi(ãi , a−i , x)+ δµi , g(ãi , a−i , x),W ).
Given this definition, the incentive compatibility con-
straint for each agent i and each action profile a in
state x given W can be written as

ICx ,W (i , a , ãi ,w) > 0.

The incentive compatibility constraint, IC is therefore
the temptation to deviate by playing ãi and must
be nonnegative for all players i and for all possible
deviations ãi for the action profile a to be incentive
compatible.
B∗ operator. We now turn to the formal description of
our operator B∗: P∗→P∗. Let W ∈P∗. We define B∗(W)x
to be the set of possible payoffs consistent with a Nash
equilibrium profile a in state x today and continuation
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payoffs drawn from the set Wg(a , x).7 That is,

B∗(W)x �
⋃

(a ,wg(a , x))

{
(1− δ)Π(a , x)+ δwg(a , x)

}
subject to

wg(a , x) ∈Wg(a , x)

and for each 1 6 i 6 N and each ãi ∈ Ai , the incentive
compatibility condition holds:

ICx ,W (i , a , ãi ,w) > 0.

Given thepreviousdefinitions, a value vx is in B∗(W)x
if there is a continuation payoff profile wg(a , x) ∈Wg(a , x)
such that vx � (1 − δ)Π(a , x) + δwg(a , x) is the value of
playing a today, and for each i, player i will choose
to play ai because he believes that to do otherwise
would yield him the worst continuation payoff in next
period’s state. Therefore the B∗ operator maps a contin-
uation value correspondence to a current value corre-
spondence, analogous to the functional Bellman oper-
ator in dynamic programming, which maps a continu-
ation value function to a current value function.

Self-generation. With the definition of B∗ complete, we
can now express the concept of self-generation central
to our analysis.
A correspondence W is self-generating if W ⊆ B∗(W).

Using an extension of the arguments of Cronshaw and
Luenberger (1994), in a related paper, Baldauf et al.
(2014) show that any self-generating correspondence
is contained within the equilibrium payoff correspon-
dence, V ∗, and that the equilibrium payoff correspon-
dence is itself self-generating. The same paper also
establishes that a unique maximal fixed point of B∗

exists and that the equilibrium payoff correspondence
is the maximal fixed point of the operator B∗.8

The operator B∗ has important properties that can
be exploited for computing the equilibrium correspon-
dence. Specifically, B∗ is monotone in the set inclu-
sion ordering, so that if U ⊆ W , U,W ∈ P∗, then
B∗(U) ⊆ B∗(W). Additionally, it preserves compactness.
It is then possible to show that the equilibrium value
correspondence V ∗, the maximal fixed point of the
mapping B∗, may be obtained by repeatedly applying
this operator to a correspondence that is known to
contain V ∗. The details, as well as the proofs of these
statements can be found in Baldauf et al. (2014) and
Kitti (2016).

Applying the B∗ operator numerically requires that
the candidate value correspondences be efficiently rep-
resented on a computer and that the monotonicity
property of the B∗ operator is preserved. In the next
section, we introduce approximation schemes specifi-
cally designed to have such features.

3. Approximating Equilibrium Value
Correspondences

To approximate the equilibrium value correspondence
of a dynamic game, we proceed in two steps. First,
we convexify the underlying game and its equilibrium
value correspondence via public randomization. Then,
we develop methods for approximating convex-valued
correspondences.

Beforewe proceedwith the details of public random-
ization and approximation algorithms, we provide the
following characterization of a convex hull.

Definition 3. If Y is a finite set of L points in <N : Y �

{yi | i � 1, . . . , L}, then the convex hull of Y is defined as

co(Y)�
{

b ∈<N |∃λ > 0,
L∑

i�1
λi � 1, b �

L∑
i�1
λi yi

}
.

For the remainder of the paper, the notation co(·)will
refer to the definition above.

3.1. Public Randomization
So far, we have not imposed any structure on the
dynamic game to ensure that the equilibrium value
correspondence has features amenable to approxima-
tion. As a first step, we follow the long tradition
in the repeated game theory literature, starting with
Fudenberg and Maskin (1986), and convexify the fea-
sible payoffs in each state with a public randomization
device at the start of each period.9

More precisely, we assume that in each stage of the
game, there is a public lottery observable to all players,
independent of all previous choices and realizations
of the lottery. Histories now include previous action
profiles as well as lottery outcomes. In each period,
players make their simultaneous choices based on this
augmented history. We also assume that the support of
the lottery is contained in Wg(a , x).

Now, W is defined as the possible ex ante continu-
ation value correspondence at time t of the dynamic
game with public randomization. Similarly, co(B∗(W)),
the convex hull of B∗(W), is defined as the set of ex ante
continuation values available at t − 1 for the dynamic
game with public randomization.

It is important to note that the players still use
pure strategies; player i does not mix between differ-
ent actions ai ∈ Ai . The public randomization delivers
an “expected” continuation value profile wg(a , x) once
the action profile a is chosen and next period’s state
g(a , x) is determined. This makes that continuation
value set convex. In the next period, the lottery out-
come determines which equilibrium that is in the sup-
port of wg(a , x) will be played.

We let V denote the ex ante continuation value
correspondence which can occur in equilibrium of
the dynamic game with public randomization. There-
fore V is convex valued and bounded. With minor
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modifications of the arguments presented in Baldauf
et al. (2014), it can be shown that the repeated appli-
cation of the operator with public randomization pro-
duces a sequence of convex-valued correspondences
that converge to the equilibrium value correspon-
dence V .

We now define P to be the set of all correspondences
that map each point in x ∈ X to some convex subset
of Ω:

P� {W : X⇒Ω |∀ x ∈ X, Wx convex}.

We define B: P→P as

B(W)� co(B∗(W)), W ∈P.

It then follows that B is monotone (i.e., for U,W ∈P, if
U ⊆W , then B(U) ⊆ B(W)), V is the largest fixed point
of B and if W0 � {Wx �Ω, ∀ x ∈ X}, and W j+1 � B(W j),
then V �

⋂
j W j .

Sorin (1986) and Fudenberg and Maskin (1991) have
shown that public randomization is dispensable if the
discount the factor is sufficiently high. Our goal is to
compute V for any discount factor. Public randomiza-
tion is a useful device because it delivers equilibrium
value sets that are convex for small discount factors.

Although public randomization convexifies equilib-
rium value sets, the challenge of representing an arbi-
trary convex set or correspondence on the computer
remains. We represent a convex set computationally
with a pair of approximations, called inner and outer
approximations, the former a subset and the latter a
superset of the approximated set. We proceed with the
precise definitions of inner and outer approximations
of convex sets, and then provide approximations for
convex-valued correspondences.

3.2. Inner and Outer Approximations
of Convex Sets

This section introduces the definitions of inner and
outer approximations of a convex set.

Definition 4. If Z ⊂W and Z is a finite set of m points
in<N : Z � {zi | i � 1, . . . ,m}, then the inner approxima-
tion W I generated by Z is W I � co(Z).

Recall that with Definition 3, w ∈ co(Z)will represent
the linear equations:

m∑
j�1
λ j � 1, λ > 0 and w �

m∑
j�1
λ j z

j , z j ∈ Z.

Figure 1 illustrates a generic convex set W , and
an inner approximation to it using the set of points
{z1 , . . . , z8}. The piecewise linear boundary of the inner
approximation allows us to represent W as a set of lin-
ear inequalities.10 Similarly, our outer approximation
of a convex set involves a set of linear inequalities, pre-
cisely defined below.

Figure 1. (Color online) Inner approximation

W
z7

z8

z1

z2

z3

z4

z5

z6

Definition 5. Assume Z � {z1 , . . . , zm} is a set of m
points on the boundary of W , and R � {r1 , . . . , rm}
⊂ <N is a set of m corresponding subgradients (nor-
mals) oriented such that (z l−w) · r l > 0 for every w ∈W .
Then, the outer approximation WO generated by Z
and R is WO �

⋂m
l�1{z ∈<N | r l · z 6 r l · z l}.

Figure 2 illustrates the set of normals {r l} and the set
of points {z l} used to construct an outer approximation
to the two-dimensional set W . An outer approxima-
tion is constructed by the intersection of half spaces
defined by the hyperplanes shown in Figure 2. Figure 3
plots the inner and the outer approximations gener-
ated by the set of points {z l} and the corresponding
normals. The inner approximation lies within the outer
approximation and the boundary of each set can be
represented by a set of linear functions.

3.3. Inner and Outer Approximations of
Convex-Valued Correspondences

Wenowintroducethegeneralconceptof innerandouter
approximation of a convex-valued correspondence.

Figure 2. Outer approximation
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Figure 3. (Color online) Inner vs. outer approximations
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Definition 6. Suppose W ∈ P and Z is a correspon-
dence such that the cardinality of Zx is finite for each x.
If for each x, Zx ⊂Wx , then the inner approximation W I

generated by Z is W I
x � co(Zx) for each x, where co(Zx)

denotes the convex hull of Zx .

Definition 7. Suppose W ∈ P and Z is a correspon-
dence such that the cardinality of Zx is finite for each x.
Also, suppose that for each x, Zx � {z1

x , . . . , z
m
x } is a set

of m points on the boundary of Wx , and Rx ⊂<N a set
of m corresponding subgradients (normals) oriented
such that (z l

x −wx) · r l
x > 0. Then, the outer approxima-

tion WO generated by Z is WO
x �

⋂m
l�1{zx ∈<N | r l

x · zx 6
r l

x · z l
x} for each x.

3.4. Outer Approximation of B
Having defined the inner and outer approximations for
a correspondence W , we now turn to the approxima-
tion of the B operator. The critical property of B is that
it maps convex-valued correspondences into convex-
valued correspondences and that it is monotone. In
particular, B(W) maps P into itself. We first define an
outer monotone approximation of the operator B that
preserve these critical properties and detail the outer
approximation algorithm. We then provide the same
for the inner approximation.
It is important to note that the B operator can be dis-

continuous. A small reduction in the discount factor
can cause the set of equilibria to collapse from sub-
stantial cooperation to one with no cooperation. The
inherent sensitivity of equilibria to parameter values
implies that there will also be sensitivity to numerical
approximation errors. Our computational procedure is
designed to handle this possibility.

Definition 8. A mapping BO : P→P is an outer mono-
tone approximation of B if

1. ∀W ∈P, BO(W) ⊇ B(W), and
2. ∀U,W ∈P if U ⊆W , then BO(U) ⊆ BO(W).

The definition of an outer monotone approxima-
tion directly implies the following proposition, which
relates the maximal fixed point of BO to the maximal
fixed point of B and also provides a sufficient condi-
tion for the outer monotone approximation scheme to
converge.

Proposition 1. Suppose BO( · ) is an outer monotone ap-
proximation of B( · ). Then, the maximal fixed point of BO

contains V . More precisely, for W ∈ P if W ⊇ BO(W) ⊇ V ,
then BO(W) ⊇ BO(BO(W)) ⊇ · · · ⊇ V .

Proof. Follows from the self-generation of V and the
definition of an outer monotone approximation.

Proposition 1 establishes that starting the the outer
monotone approximation of the B operator with a
correspondence that contains the true equilibrium
value correspondence is sufficient for the approxi-
mation scheme to converge. The following Lemma
asserts that the special correspondence W � {Wx �Ω,∀ x ∈ X} is a good initial guess for the outer monotone
approximation.

Lemma 1. W ⊇ BO(W) ⊇ V .

Proof. Follows from the definition of W and self-
generation.

Problems without state variables only require the
approximation of a single value set at each iteration.
In contrast, the dynamic problem we are interested in
requires that a collection of approximated value sets,
one for each element of the (finite-) state space, be
found at each iteration. Additionally, the latter prob-
lem requires that the implications of each action pro-
file (and each deviation from an action profile) for the
future state be found, and that future continuation val-
ues be obtained appropriately from the relevant con-
tinuation value set. Next, we provide the details of our
outer monotone approximation algorithm for dynamic
games with discrete states and full information.

Outer Monotone Approximation Algorithm for
Supergames with State Variables

1. Inputs:
(a) Set of normals:

R � {r1 , . . . , rm}.

(b) Set of boundary points for each state:

Zx � {z1
x , . . . , z

m
x }.

Inputs (a) and (b) define the correspondence W , where
for each x ∈ X

Wx �

m⋂
j�1
{b ∈<N | r j · (b − z j

x) 6 0}.
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2. Choose search subgradients:

S � {s1 , . . . , s l}.

3. Compute the new subgradient and boundary
point sets, R+ and Z+, that together represent an outer
approximation to B(W). For each x ∈ X and each
s ∈ S, do

(a) for each action profile a ∈ A, solve the linear
programming (LP) problem

ca
x(s) � max

wg(a , x)
s · [(1− δ)Π(a , x)+ δwg(a , x)],

s.t. wg(a , x) ∈Wg(a , x) ,

ICx(i , a , ãi ,w)> 0, ∀ ãi ∈Ai , i �1, . . . ,N.

Let w∗g(a , x)(s) be an arg max of the previous problem.
Let va

x(s) � (1 − δ)Π(a , x) + δw∗g(a , x)(s) be the corre-
sponding vector of player payoffs.
If the above problem is not feasible, then ca

x(s)�−∞,
w∗g(a , x)(s)��, and va

x(s) is a vector of −∞.
(b) Choose the action profile that maximizes the

weighted value

a∗x(s) ∈ arg max
a

ca
x(s).

Let v∗x(s)� va∗
x (s) be the corresponding vector of payoffs

and c∗x(s)� ca∗
x (s) the corresponding vector of weighted

payoffs.
4. Update R and Z:
(a) The new set of normals is

R+
� S.

(b) The new set of boundary points is

Z+

x � {v∗x(s) | s ∈ S}.

The sets R+ and S+ together define the outer approxi-
mation to B(W), W+. For each x,

W+

x �

l⋂
j�1
{b ∈<N | r j · b 6 r j · z j

x}, r ∈ R+ , zx ∈ Z+

x .

(c) Check for convergence:
Stop if the Hausdorff distance between W+

x and Wx
is less than ε > 0 for all x ∈ X; else set Wx �W+

x , R � R+,
Zx � Z+

x , and go back to Step 2.
The key step in our outer approximation is the col-

lection of optimization problemswe solve in Step 3. For
a fixed directional search s and action profile a, each
optimization problem is transformed into a LP prob-
lem in the continuation utility profile wg(a , x). In the
objective function, the current period payoff becomes a
scalar once a particular action profile is set, therefore,
it is the weighted average of continuation utilities that
are maximized. The constraint

wg(a , x) ∈Wg(a , x)

is replaced by a set of linear inequality constraints
in wg(a , x) and these linear constraints define the inter-
section of the half spaces that represent an outer ap-
proximation to the set Wg(a , x).

The incentive compatibility constraints in Step 3a can
also be expressed as linear constraints on continua-
tion utilities since the action space is finite. For a given
search direction s, we run through the full set of action
profiles, and then choose the action profile that maxi-
mizes the objective ca

x(s) � s · [(1− δ)Π(a , x)+ δwg(a , x)].
The new maximized weighted values {c∗x(s)} are then
used to construct a new outer approximation for each
state x:

W+

x �

l⋂
j�1

{
b ∈<N | s j · b 6 c∗x(s j)

}
.

Therefore our outer approximation algorithm trans-
forms a mapping problem in correspondences, to a
series of LP problems. The inner monotone approxi-
mation uses a similar insight, the difference lies in how
the approximation to the sets {Wx} are constructed in
each iteration, and how the initial correspondence is
chosen.

Figure 4 illustrates features of a LP problem from
Step 3 of the algorithm, having chosen a search direc-
tion s and an action profile a, for two players. Assume
it’s the case that the action profile involves staying in
the same state x � 1. Therefore the continuation value
profile w1 will be chosen from the set W1. The incentive
compatibility conditions are linear constraints on these
continuation values, as shown in the figure. Searching
in the northeast direction, conditional on the chosen
action profile, a continuation value pair w1 that max-
imizes the linear objective is at the intersection of the
two hyperplanes that help define the outer approxi-
mation to W1. The incentive compatibility constraints
shown are not binding. Additionally, the figure shows
the continuation utility agent 1 would receive, if he
or she were to deviate from the set action profile and

Figure 4. (Color online) Continuation value search
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choose an action that moves the dynamic game to the
aggregate state x � 2. The value µ1, 2 represents the
worst payoff agent 1 would receive in state x � 2.

Iteration and convergence criterion. The convergence
criterion for computing an outer approximation of the
equilibrium value correspondence is very straightfor-
ward if the search directions across iterations stay
the same. In that case, each iteration produces a set
of hyperplane positions determined by the weighted
payoffs {c∗x(s)} for each state x and convergence is
assumed when, for some ε small, the Hausdorff
distance between subsequent outer approximations
satisfies

max
x∈X

{
max

s∈S
|c∗,+x (s) − c∗x(s)|

}
6 ε,

where for a specific direction s � s j , c∗x(s j)� s j · z j
x , s j ∈ S,

z j
x ∈ Zx , and {c∗,+x (s)} are the updated values of {c∗x(s)}

after one outer approximation iteration.
If the search directions change across iterations, then

a modified convergence criterion is needed. Following
the description of our inner approximation, we provide
one such criterion.

3.5. Inner Approximation of B
We now turn to the inner approximation of the B
operator.

Definition 9. A mapping BI : P→P is an inner mono-
tone approximation of B if
1. ∀W ∈P, BI(W) ⊆ B(W), and
2. ∀U,W ∈P if U ⊆W , then BI(U) ⊆ BI(W).

Proposition 2. Suppose BI( · ) is an inner monotone
approximation of B( · ). Then, the maximal fixed point of BI

contains V . More precisely, for W ∈ P, if W ⊆ BI(W) ⊆ V ,
then BI(W) ⊆ BI(BI(W)) ⊆ · · · ⊆ V .

Proof. Monotonicity of BI implies that if W ⊆ BI(W),
then BI(W) ⊆ BI(BI(W)), etc. By definition of BI , if
W ⊆ BI(W), then W ⊆ B(W), which implies that W ⊆ V .
Then, monotonicity also implies BI(W) ⊆ B(W) ⊆
B(V)� V , BI(BI(W)) ⊆ B(BI(W)) ⊆ B(V)� V , etc.
The previous proposition establishes that applying

the inner monotone approximation of the B opera-
tor repeatedly to a carefully chosen initial set yields
an approximation to the equilibrium value corre-
spondence that is contained in the equilibrium value
correspondence. In APS language, the initial corre-
spondence must be a self-generating correspondence.
Unlike the outer approximation, we do not have an
obvious candidate for the initial inner correspondence
that leads to convergence. In practice, however, it is
possible to find such a correspondence. We discuss this
in more detail in Section 3.6.

Inner Monotone Approximation Algorithm for
Supergames with State Variables

1. Input:
(a) Sets of points for each state:

Zx � {z1
x , . . . , z

mx
x },

which represents the correspondence W , where for
each x, Wx � co(Zx).

2. Choose search subgradients

S � {s1 , . . . , s l}.

3. Compute new Z+ that represents an inner approx-
imation of B(W). For each x ∈ X, s ∈ S, do:

(a) For each action profile a ∈ A, solve the LP
problem:

ca
x(s) � max

wg(a , x)
s · [(1− δ)Π(a , x)+ δwg(a , x)], (1)

s.t. wg(a , x) ∈ co(Zg(a , x)),
ICx(i , a , ãi ,w)> 0, ∀ ãi ∈Ai , i �1, . . . ,N.

Let w∗g(a , x)(s) be an arg max of (1) and define

va
x(s)� (1− δ)Π(a , x)+ δw∗g(a , x)(s)

to be the corresponding vector of player payoffs. If (1)
is not feasible, then ca

x(s)�−∞, w∗g(a , x)(s)�� and va
x(s)

is a vector of −∞.
(b) Record the values va

x(s) that support the same
action profiles for each x in {Ωa

x}:11

Ωa
x � {va

x(s) | va
x(s) > −∞, s ∈ Sx}.

(c) Choose action profile that maximizes the
weighted value:

a∗x(s) ∈ arg max
a

ca
x(s).

Let v∗x(s) � va∗
x (s) be the corresponding vector of

payoffs.
4. Update correspondence Z: For each x ∈ X,

Z+

x � {v∗x(s) | s ∈ S}.

The set of Z+

x represents an inner approximation of
B(W) and for each x, W+

x � co(Z+

x ).
5. Check for convergence:

Stop if the convergence criterion is satisfied, else set
Wx � W+

x , Zx � Z+

x , and go back to Step 2.
Iteration and convergence criterion. The convergence
criterion for the outer monotone approximation is
based on the Hausdorff distance between successive
approximations of the outer polytope. A similar cri-
terion can be applied to the inner monotone approxi-
mation, where the distance between W+

x � co(Z+

x ) and
Wx � co(Zx) can be computed, and iterations continued
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until the biggest of such distances amongst x is smaller
than some epsilon. That is, the distance between W
and W+ is defined as

max
x∈X

d(Wx ,W
+

x ),

where the distance between Wx and W+

x is defined to
the maximum of the distances between W+

x and the
extreme points of Wx , and the distances between Wx
and the extreme points of W+

x , i.e.,

d(Wx ,W
+

x )�max
{

max
z∈Zx

min
w∈W+

x

‖z−w‖ ,max
z∈Z+

x

min
w∈Wx

‖z−w‖
}
.

Note that the distance between W+

x and one extreme
point of Wx , z is defined to be the shortest distance
between z and all boundary and interior points of W+

x .
Thus, if z is an interior point of W+

x , then the distance
between z and W+

x is 0. This applies symmetrically
to the definition of the distance between Wx and one
extreme point of W+

x .12

3.6. Error Bounds and Initial Guesses
The inner and outer monotone approximation schemes
have two main differences. First, the outer monotone
approximation iterations produce a sequence of cor-
respondences that monotonically shrink toward the
equilibrium value correspondence. The inner mono-
tone approximation proceeds in the opposite way; it
produces a sequence of monotonically increasing cor-
respondences that converge toward the equilibrium
value correspondence. Second, in each iteration, the
value sets are constructed differently; in the outer
monotone approximation, the intersection of the half
spaces defined by the search normals and boundary
points approximate the value sets. In the inner mono-
tone approximation, the convex hull of the boundary
points is used to construct the sets.
While the outer monotone approximation is an

important tool for ruling out values from the equilib-
rium value sets, the inner monotone approximation is
used for verifying that values are part of the equilib-
rium value sets. In other words, any value outside of
the outer monotone approximation is not an equilib-
rium value, while any value inside the inner monotone
approximation is an equilibrium value. These inner
and outer approximations “sandwich” the true equi-
librium value correspondence. Therefore we can cal-
culate the approximation error at each finite iteration,
which is unusual for iterative algorithms, by finding
the distance or the area between the inner and outer
correspondences. Figure 5 illustrates such errors for
the N � 2 case. The errors are marked with the shaded
areas, corresponding to the area between the inner
and outer approximation boundaries. In our computed
examples, the errors are very small; the inner and outer
approximations look almost identical visually.

Figure 5. (Color online) Inner and outer approximations and
errors
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Since the B operator is a monotone operator, initial
correspondence used in the inner and outer monotone
approximations have to be carefully chosen. Lemma 1
establishes that using Ω � ×N

i�1[Π i ,Πi] as the initial
correspondence guarantees that the outer approxima-
tion contains the equilibrium value correspondence.
We do not have an analogous lemma for the inner
approximation. However, in practice, we have found
that first computing the outer approximation and
then using a set contained within the outer approx-
imation as the initial set for the inner approxima-
tion iterations works very well. Typically, we “shrink”
the outer approximation correspondence and apply
the self-generation test. In other words, we check if the
shaved outer approximation, W̃O , satisfies the condi-
tion W̃O ⊆ BI(W̃O) before proceeding with the inner
approximation iterations.

3.7. Computing Equilibrium Paths
Our inner and outer approximations reveal all of the
equilibrium values of the dynamic game, but we are
also interested in the action profiles associated with
these equilibrium values, and how these profiles may
evolve along an equilibrium path. In the final stage
of our computational procedure, we provide an algo-
rithm to construct sample equilibriumpaths. Each value
in the equilibrium set may be supported by more
than one action profile and continuation value profile,
therefore, in addition to the multiplicity in equilibrium
values, there is multiplicity in the action profiles that
support a particular value. Our third algorithm deliv-
ers sample paths; it is not intended to recover strategies,
which are complicated functions of histories.

To construct a sample equilibrium path, we first
choose a starting equilibrium value, bx and find an
action profile a and continuation value profile wg(a , x)
that support bx . We then find an action profile and a
continuation value profile that together support wg(a , x)
and continue iterating in this manner. Note that the
algorithm uses the information stored during the inner
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approximation scheme, specifically, the extreme points
whose convex hull define an inner approximation and
also the Ωa

x sets that record the action profiles for the
extreme points of V I

x for each x. The precise steps are
as follows.

Sample Equilibrium Path Algorithm
1. Input: Set Zx and bx ∈V I

x � co(Zx).
2. Find equilibrium actions and continuation values

that support bx .
(a) For each a ∈A, check if bx belongs to someΩa

x .
If yes, then compute wg(a , x) � δ

−1[(bx − (1 − δ)π(a , x)].
Record vx � bx as the equilibrium value in path, set
bx � wg(a , x), and go back to Step 1 to continue path. If
no, proceed to Step 2b.

(b) For each a ∈ A, calculate wg(a , x) � δ−1[(bx −
(1− δ)π(a , x)] and check constraints:

wg(a , x) ∈V I
g(a ,x)

and

ICx ,V I
g(a ,x)
(i , a , ãi ,wg(a , x)) > 0, ∀ ãi ∈ Ai , i � 1, . . . ,N.

If there is an a and associated wg(a , x) that can sup-
port bx , then record vx � bx as the equilibrium value
in path, set bx � wg(a , x), and go back to Step 1. If not,
proceed to Step 2c.

(c) Solve for 0 6 λi 6 1, i � 1, . . . ,mx such that

bx �

mx∑
i
λi z

i
x and

mx∑
i
λi � 1,

where co({z i
x})� V I

x .
Then, pick a value z i

x with λi > 0, according to a
randomization device. Replace bx � z i

x , and go back to
Step 1.
It is possible (and quite probable) that any bx can be

implemented by more than one pure strategy action
profile. In this case, we choose an a according to some
criterion. Examples of criteria that can be used include
maximizing total current profits, or minimizing cur-
rent profits, or symmetry in current payoffs. If the algo-
rithm proceeds to Step 2c, then public randomization
is used to support the particular bx value by making a
random choice from the set {z i

x | λi > 0}.

4. Application: Dynamic Oligopoly with
Endogenous Capacity

This section provides an example of a dynamic game
with state variables to illustrate our numerical method.
Specifically, it extends a standard textbook oligopoly
model to a dynamic setting with capacity investment.
This particular choice of application is not arbitrary;
similar models have been studied extensively in game
theory and industrial organization literatures, but due

to the intractability of these models, only partial char-
acterization of the solution has been possible. Despite
these difficulties, the literature on oligopolistic firm
behavior has provided, amongst others, the following
two important insights. First, the resulting outcome is
influenced by the strategic variable firms employ: price
versus quantities. Second, regardless of the strategic
variable firms employ, results are highly sensitive to
whether a dynamic or a static model is used. In the
oligopoly game analyzed in this section, we allow firms
to use multiple strategic variables (quantity and capac-
ity) and the environment is dynamic.

One of the most compelling reasons for studying
dynamic oligopoly models with endogenous capacity
is to understand how strategic capacity choices can
affect equilibrium outcomes, especially when build-
ing and reducing capacity come with nontrivial costs.
Capacity can limit both incentives to deviate (e.g.,
to undercut rivals) and retaliation possibilities. For
example, in the static models employed by Spence
(1979), Fudenberg and Tirole (1983), increased capacity
enables the incumbent firm to threaten the would-
be entrant with lower profits in the postentry equi-
librium, thus discouraging entry. Benoit and Krishna
(1991), however, show thatwhen themodel is dynamic,
a completely different finding emerges: lower capac-
ity could deter entry because higher capacity increases
the prospects for tacit collusion.13 Because solutions
to even the simplest of such models are quite diffi-
cult to characterize, especially for arbitrary discount
factors, much of the literature on dynamic oligopoly
imposes restrictions on the environment, choice vari-
ables or equilibria. Themost popular amongst these are
allowing firms to choose capacities only in the initial
period, concentrating on symmetric stationary equilib-
ria or choosing high discount factors. These restrictions
can limit the scope of applications and the range of
outcomes—for example, a realistic study of firm splits,
mergers, transfers, and competition require an abil-
ity to consider asymmetric costs or capacities—and in
most cases, they are not enough to rule out multiplicity
of equilibria.14
Our method is not intended to reduce the multi-

plicity problem that arise in dynamic games, but to
uncover all SPE value sets and how these sets change
when the primitives of the underlying game are mod-
ified. The following results are illustrative of such
comparative static exercises, and of sample equilib-
rium paths to demonstrate our method, and there-
fore are not meant to be a comprehensive analysis
of dynamic oligopoly with capacity constraints. We
first describe the particular infinite-horizon dynamic
oligopoly model in detail and then provide numerical
solutions based on our algorithms.

The environment is as follows. Firms, indexed by i,
with i ∈ {1, . . . ,N} participate in a market for a
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finished good with linear demand. Each firm’s tech-
nology is augmented by the incorporation of a capac-
ity constraint, which depends on the total number
of machines it possesses. If firm i has ki ∈ K � {0, 1,
. . . , nk} machines, then it can choose an output from
the set Qi � [0, Q̄(ki)], where the maximum output it
can produce in the current period is bounded above
by Q̄(ki). Firms can exit the market by choosing k � 0
and a choice of k > 0 from the state k � 0 is interpreted
as entry. Firm i has sales of qi ∈Qi , and per unit cost ci .
The cost of maintaining a machine for a period is given
by cM . In every period, each firm can alter its capi-
tal/capacity stock by purchasing and installing a new
machine at a cost of cF . Machines are indivisible and
become operational one period after the cost of invest-
ment is incurred. There is a market for the resale of
capital at a price of pS.
Let C(ki , k′i) denote the cost of maintaining ki

machines this period and altering the number of
machines to k′i in the next period. Then, C( · ) takes the
following form:

C(ki , k
′
i)�

{
cM · ki + cF · (k′i − ki) if k′i > ki

cM · ki − pS · (ki − k′i) if k′i 6 ki .

Firm i’s current profits are given by

Πi(q , ki , k
′
i)� qi(p(q) − ci) −C(ki , k

′
i),

where ci is the per unit production cost for firm i. The
market price, p(q) is given by a linear demand curve
and q represents the vector of quantities {q1 , . . . , qN},
chosen by each firm:

p(q)� max
{
Γ− γ

N∑
i

qi , 0
}
, (2)

where Γ and γ are two parameters. The capacity con-
straint takes the following linear form,

Q̄(ki)� ρki , (3)

so that the incremental increase in maximum output a
firm can produce is set to ρ.
The stage game action spaces for this problem are

sets of outputs and capital stocks (i.e., machines), for
each firm. The state space is the set of feasible capital
stocks for all firms. Thus, Ai � Qi ×K and X � KN . Firm
strategies are collections of functions that map from
histories of outputs and capital stocks into current out-
put and capital choices. As usual, each firm attempts
to maximize its average discounted profits.
In the next subsections, we show a variety of numer-

ical results from four different parameterizations of
our capacity game with two firms. Table 1 reports the
parameter values for each of the four cases. Case 1
represents our benchmark parameterization with nk �

2, . . . , 5 and features reversible investment. Case 2 is

Table 1. Cases and parameter values

Investment nk δ c1 c2 cF cM sP

Case 1 Reversible 2–5 0.8 0.9 0.9 2.5 1.5 1.5
Case 2 Irreversible 2–5 0.8 0.9 0.9 2.5 1.5 N/A
Case 3 Irreversible 3 0.4 0.9 0.9 2.5 1.5 N/A
Case 4 Irreversible 3 0.8 0.1 0.9 2.5 1.5 N/A

used to investigate the effects of irreversibility of invest-
ment. Case 3 represents the game with a low dis-
count factor and irreversible investment. Case 4 is the
asymmetric cost case. The parameters that govern the
inverse demand function (Γ and γ) and the capacity
constraint (ρ) are set to Γ� 6, γ� 0.3, and ρ� 3 for all of
the computed examples. Additionally, we provide an
example from a game with three firms. Further details
about the dynamic game and our numerical procedure,
including the solution to the monopolist’s problem for
each case, as well as action grids, number of hyper-
planes, and running times for our benchmark case are
also provided.

Table 2 provides the solutions to the monopolist’s
problem for each case. In Case 4, we assume the
monopolist has per unit cost of 0.1. Also, highlighted
are the steady states, assuming that the monopolist
is endowed with 0 capacity in the initial period and
builds up its capacity after entry.

Before we proceed with the oligopoly results, we de-
fine the terminology we use for certain types of strate-
gic behavior. Tacit collusion refers to equilibria with
strategy profiles that generate the monopoly outcome.
If the joint profits of the firms equal, the monopoly
profits in that state, and the production/investment
levels collectively match the monopoly choices, we
refer to these outcomes as tacit collusion. When the
monopoly profits and production are shared equally
by the firms, we refer to it as the symmetric collusive
outcome. Joint profit maximization is a type of collusion,
typically associated with cartels or explicit coordina-
tion, rather than tacit collusion.15

4.1. Cases 1 and 2: Reversible vs.
Irreversible Investment

Case 1 serves as a benchmark for comparison across
various parameterizations. We also use it to display
and discuss certain features (initial correspondences,
B operator, action grids, etc.) of our algorithm.

Initial Correspondence. In Case 1, because investment
is reversible and entry and exit are possible, in equi-
librium, firms cannot be forced to earn profits less
than zero. The best they can earn in each state is
the monopoly profit associated with that state. There-
fore we make sure the initial correspondence for
the outer approximation includes the correspondence
{[0 − ε, vm(k) + ε]2}nk

k�1. The margin of ε is added to
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Table 2. Monopoly values and choices

Case 1 Case 2 Case 3 Case 4

k q k′ vm k q k′ vm k q k′ vm k q k′ vm

0 0 2 12.44 0 0 2 12.44 0 0 2 3.72 0 0 3 17.94
1 3 2 15.16 1 3 2 15.16 1 3 2 11.88 1 3 3 21.14
2 6.0 2 16.80 2 6.0 2 16.80 2 6.0 2 16.80 2 6 3 23.26
3 8.5 2 17.18 3 8.5 3 17.18 3 8.5 3 17.18 3 9.0 3 24.30
4 8.5 2 17.18 4 8.5 4 15.68 4 8.5 4 15.68 4 9.9 4 23.01
5 8.5 2 17.18 5 8.5 5 14.18 5 8.5 5 14.18 5 9.9 5 21.51
6 8.5 2 17.18 6 8.5 6 12.68 6 8.5 6 12.68 6 9.9 6 20.01

ensure that numerical inaccuracy does not eliminate
potential equilibrium values from the initial correspon-
dence. The monopoly values {vm} for each state and
case, including Case 1, can be found in Table 2.

Search subgradients. In the two-dimensional case,
we typically use 36 subgradients to span each set.
This can be done by setting search subgradients to
(cos(θ), sin(θ)), where θ ∈ {0, . . . , 2π}. When we want
to have the subgradients uniformly distributed, we
set the increments between each θ value to 2π/35.
In most cases, we keep the search subgradients the
same across states and iterations. We have also used an
adaptive scheme for the search subgradients, adding
more of them in the directions of large changes in the
boundaries between iterations, reducing them in the
directions of no or very little changes in boundaries
between iterations to increase accuracy and speed. All
the results reported in Section 4, however, are from the
uniformly distributed subgradients.

B operator. The main part of our algorithm is the
implementation of the B operator. It involves solving a
series of LP problems to find the new values that are

Figure 6. (Color online) Monotonic convergence
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incentive compatible and that are supported by contin-
uation values from W . The number of LP problems per
iteration depends on the number of aggregate states,
number of discrete actions (quantities produced and
capacity investment), and number of search subgradi-
ents. For example, for our benchmark case, Case 1, we
set nk � 3, number of quantities to 91, and the number
of search subgradients to 36.Without taking advantage
of symmetry, this results in more than 19 million LP
problems per iteration. For this particular example, the
outer approximation took 82 iterations for convergence
and the inner approximation had 65 iterations. With
640 cores, the outer approximation took 3.2 minutes
and the inner approximation 2.6 minutes to converge.

Figure 6 displays the equilibrium value set, for state
(1, 1), at different iterates of the inner approximation
algorithm. The initial equilibrium value set, which is
the innermost polygon that corresponds to iteration 0,
is small and is chosen to lie within the equilibrium
value set.16 With the repeated application of the BI

operator, the value sets enlarge andmonotonically con-
verge (plotted are the initial set, iterations 1 and 20) to
the value set labeled as the inner approximation. Fig-
ure 7 shows the inner and outer approximations for

Figure 7. (Color online) Inner vs. outer
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Figure 8. (Color online) Case 1: Values
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Case 1, state (1, 1) together. The two approximations
are nearly identical, with the exception of small differ-
ences in the northeast region. The figure confirms the
accuracy of our results since the inner approximation
is contained within the outer approximation, and the
error region between the two value sets is very small.
Although Figures 6 and 7 show the results from state
(1, 1) only, the results are similar for all the other aggre-
gate capacity states.

In Figure 8, we show the Case 1 inner approxima-
tions for the symmetric states (0, 0), (1, 1), (2, 2), and
(3, 3) for maximum allowed capacity ranging from
nk � 2, to nk � 5. We are interested in the effect of nk
on equilibrium values because industrial policies such
as rules about mergers and acquisition, import quotas,
or environmental regulations may limit the amount of
maximum capacity a firm can hold. We do, however,
ensure that the choice of nk does not make the optimal
monopoly capacity and production choices infeasible,
although in equilibrium, they may not be achieved by
a single firm. As Table 2 shows, a monopolist facing
the same market in Case 1 would choose two machines
and produce six units of output, earning a payoff of
16.8 in steady state. If monopoly profits were to be
equally shared, each firm would have one capacity,
produce three units of output and earn 8.4. This pay-
off is marked with a diamond in state (1, 1). In this
example, tacit collusion is possible in equilibrium since

all values on the frontier (northeast direction) sum to
monopoly profits for all nk ∈ {2, 3, 4, 5}. The ability or
inability to accumulate more capacity does not rule out
tacit collusion. However, with the ability to build more
capacity, the maximum and minimum values an indi-
vidual firm can achieve does change. As nk increases,
the equilibrium value sets enlarge, until the lowest
equilibrium values (nearly) reach zero. Since negative
values are not supported in equilibrium when free
entry and capital reversal are allowed, the equilibrium
value sets for nk � 5 cannot extend anymore, and hence
overlap with the nk � 4 sets.
As mentioned before, the best symmetric stationary

equilibrium in Case 1 involves one machine and out-
put q � 3 per firm, which would deliver an equilibrium
value of 8.4 for each firm. Therefore, in our discus-
sion of the numerical results involving Case 1, we refer
to any aggregate capital state exceeding two machines
and aggregate production exceeding six units as over-
capacity and overproduction. One interesting ques-
tion that arises is whether firms can reach this best
symmetric equilibrium from zero initial capacity. In
Figure 9, we display an equilibrium path with nodes
numbered to reflect the time sequence of equilibrium
play, starting from the lowest computed value (node 1)
in the game with zero machines for each firm. The
path to cooperation involves a brief period of over-
accumulation of capacity as firms move to the state
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Figure 9. (Color online) Case 1: Sample path
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(5, 5) and then (4, 4), but quickly reaches the symmetric
best payoff in the (1, 1) state. Note that although there
may be equilibrium paths that start from node 1 and
not reach this symmetric best SPE, one way to get to
that best symmetric payoff from a much worse pay-
off involves costly excessive investment. Besanko et al.
(2010) find similar equilibrium behavior in a dynamic
model of an oligopolistic industry with lumpy capac-
ity and lumpy investment or disinvestment although
they focus on Markov-perfect equilibria. They display
equilibrium paths in which excess capacity in the short

Figure 10. (Color online) Irreversible vs. reversible investment: Value sets
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run often go hand-in-hand with capacity coordination
in the long run.

Figure 9 features a sample path of firms reaching the
best stationary symmetric equilibrium after a period
of excess capacity. Because investment is reversible,
excess capacity for a brief period is not very costly for
the firms, especially if it helps ensure a higher payoff
later on. A question of interest is how irreversibility
of investment alters the equilibrium value correspon-
dence and outcomes. Figure 10 compares the equilib-
rium values in four symmetric states for the reversible
(Case 1) and irreversible (Case 2) cases.17 Player pay-
offs are very similar in states (0, 0) and (1, 1), but the
cost of irreversibility becomes apparent when firms
are in higher capacity states. The mandatory mainte-
nance cost hurts the firms and the best they can achieve
in these large capacity states is well below the best
they can achieve in the flexible investment case. One
would expect that given the irreversibility of invest-
ment, firms would shy away from overinvestment in
capacity. The equilibrium path in Figure 11, however,
shows the firms moving from zero capacity to five
machines at the same time. Interestingly, they quickly
move (see nodes 2–4) to the best symmetric equilibrium
value (node 4) in state (5, 5) and stay there. At node 4,
there is not only overcapacity, but also overproduction
with aggregate output equal to 8.5 instead of 6.
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Figure 11. (Color online) Irreversible case sample path 1
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Although Case 1 produces equilibrium outcomes
that involve tacit collusion (see Figure 9) following a
brief period of overcapacity by both firms, it also has
an equilibrium path in which the road to collusive
behavior involves one firm acting as a monopolist for
a period of time before the second firm enters. This
path is displayed in Figure 12. Firm 2 enters first with
three machines, so the state is (0, 3) for a brief period,
followed by some disinvestment by Firm 2, therefore
the state moves to (0, 2). While in state (0, 2), Firm 2’s
continuation value slightly decreases while Firms 1’s
increases (see nodes 9 to 16), which is supported by
Firm 1 entering with 1 machine, and Firm 2 disin-
vesting further to move to state (1, 1) (see node 17).
The payoffs in node 17 in Figure 12 are jointly equal
to monopoly profits, and the firms stay there for the
remainder of the game. Given that the values asso-
ciated with node 1 are positive (0.22, 12.01), it is not
surprising that at some point firm 1 enters and earns
positive profits, but it is surprising that a path to col-
lusion involves a period of monopoly power for one

Figure 12. (Color online) Reversible case sample path
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Figure 13. (Color online) Irreversible case sample path 2
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of the firms. Entry by the competing firm is deferred
rather than deterred. When investment is irreversible,
however, a payoff of 0 is in the value set in state (0, 0),
which implies that there is an equilibrium outcome
in which one firm never enters. Figure 13 shows one
such path, where Firm 2 enters with twomachines first,
deters entry, and operates permanently as a monopoly.

Our algorithm is designed to deliver all SPE val-
ues and to construct sample equilibrium paths. It is
not intended to be used to uncover strategies, which
are complicated objects of histories. In the dynamic
oligopoly literature (and elsewhere), it is common
practice to restrict attention to Markov-perfect equi-
libria (MPE) for tractability, especially since Markov
strategies do not condition on entire histories. One
would ideally like to know if such restrictions on strate-
gies alter firm competition and cooperation in signifi-
cant ways, however, there is no available method that
reliably computes all MPE of infinite-horizon dynamic
games, therefore comparisons between all MPE values
to all SPE values cannot be made. Nevertheless, we
can determine if a particular equilibrium path is not
MPE. For example, the path in Figure 12 is not part
of an MPE, because in states (0, 2) and (0, 3), firms’
action profile includes staying in the same state, but
also switching to another state deterministically.18

4.2. Cases 2 and 3: Low vs. High Discounting
One of the advantages of our algorithm is the ability
to compute equilibrium value correspondences for any
discount factor and not confine ourselves to large dis-
count factors to rely on folk theorem types of results.
For illustrative purposes, we have computed the irre-
versible investment case (Case 2) using δ� 0.4 (Case 3).
This particular example also shows that our algorithm
can handle equilibrium value sets that are reduced to
singletons, while delivering some insights about how
discounting can affect firm behavior and equilibrium
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Figure 14. (Color online) Low vs. high discounting
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outcomes. Discounting also typically affects the con-
vergence speed in iterative methods aimed at solving
dynamic problems, but we did not find it a significant
constraint on our ability to compute value sets effi-
ciently. We used 36 subgradients, 91 quantities, max-
imum 3 machines for each firm in computing Case 2
and Case 3 using 640 cores. The δ � 0.8 case took 83
(outer) and 76 (inner) iterations for convergence, for a
total computing time of 15 minutes. The δ � 0.4 case
took 27 (outer) and 20 (inner) iterations for conver-
gence, for a total time of 8 minutes.
Figure 14 shows the equilibrium value sets for four

different states (nk � 3) for high and low discounting
with irreversible investment. The equilibrium value set
for states (0, 0) and (1, 1) in for δ � 0.4 are singletons.
In state (0, 0), the only equilibrium value for δ � 0.4
overlaps with the lowest equilibrium value of δ � 0.8.
In state (1, 1), in contrast, the only equilibrium value
is the best symmetric equilibrium value. There is an
equilibrium in which starting from the single value in
state (0, 0), firms immediately jump to the best sym-
metric equilibrium in state (1, 1) and stay there forever.
In other words, firms enter into the market simulta-
neously and move to best symmetric equilibrium and
stay there for the remainder of the game. This par-
ticular path shows that cooperative behavior is possi-
ble even when firms are impatient and investment is
irreversible.

Figure 14 also shows the value sets from two asym-
metric states: (0, 3) and (3, 0). There are a couple of fea-
tures to note. One, the equilibrium value sets for low
and high δ do not overlap. Second, when firms are less
patient, there is an equilibrium inwhich the incumbent
firm, if it has large enough capacity advantage, can
operate as a monopolist forever. The values associated
with monopoly profits are shown on the figure. When
firms are patient (and nk � 3), however, no firm acts
as a monopolist forever. The equilibrium values in the
δ � 0.8 case do not include zero value for one firm and
monopoly payoff for the other firm. Both firms enter
the market at one time or another.19

Although our method is not designed to uncover
strategies, the computed value sets can be used to
provide insight into equilibrium behavior. Figure 15
shows the equilibrium values sets from all 16 aggregate
states for δ � 0.4 and δ � 0.8. States (0, 0), (1, 0), (0, 1),
and (1, 1) have a single equilibrium value each. The sta-
tionary equilibrium that delivers the best equilibrium
in state (1, 1), which is the single equilibrium value in
that state, is the continuation value for each of the sin-
gle values in states (0, 0), (1, 0), and (0, 1). States (0, 2)
and (0, 3) ((2, 0) and (3, 0)) all have equilibrium values
sets that include monopoly profits for Firm 2 (Firm 1)
for δ � 0.4. In all other states, equilibrium values are
above 0. In other words, in this particular game, firms
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Figure 15. (Color online) Low vs. high discounting
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can deter entry, earn, and maintain monopoly prof-
its indefinitely when they start with a large capacity
advantage, and future profits are discounted heavily.

4.3. Case 4: Asymmetric Cost
In this example, we compute the equilibrium value cor-
respondence of an asymmetric case with irreversible
investment. Firm 1 has lower per unit production cost,
c � 0.1, relative to Firm 2 whose per unit cost is c2 � 0.9.
Figure 16 displays equilibrium values from four differ-
ent capacity states for Case 2 and the asymmetric cost
case, Case 4, for nk � 3. As one would expect, in all four
states, the best equilibrium payoffs for Firm 1 increase,
while the best equilibrium payoffs for Firm 2 decrease.

The lowest equilibrium payoff for Firm 2 does not
decrease, however. This is due to the fact that Firm 1,
althoughmore cost efficient, hits its capacity constraint
and cannot decrease the price further to deliver lower
profits to Firm 2. The cost advantage of Firm 1 is tam-
pered by the costly and limited capacity investment.

The select numerical results from Cases 1 to 4
show how the equilibrium value sets are altered with
changes in investment reversibillity, asymmetric cost,
discounting and maximum capacity firms can attain.
Some of the insights gained from the comparative stat-
ics exercises for our particular game are the following.
Payoffs associated with tacit collusion is part of the
equilibrium values in all of the cases. Overproduction
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Figure 16. (Color online) Low vs. high unit cost
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and overinvestment is present in the reversible and
irreversible investment cases, albeit in the reversible
case it is a temporary phase, while it can be a per-
manent state in the irreversible investment case. Firms
can deter entry by their competitors indefinitely if they
have a large enough capacity advantage, face a cap in
the maximum capacity they can obtain and are suffi-
ciently impatient, but not when they are patient. When
firms face a larger maximum capacity (nk in our set-
ting), they increase their ability to deliver lower profits
to their competitor, by having the ability to increase
production enough to lower the price significantly. A
lower per unit production cost delivers higher equi-
librium values for a firm, but does not deter entry if
that cost advantage is constrained by the maximum
capacity it can build. It is important to note that these
are results from cases with positive maintenance costs,
which naturally deters excessive capacity investment.
Eliminating the maintenance cost would alter equilib-
rium values and behavior.20

4.4. Three Firms
Our method is not constrained to handle only two
firms. Our algorithm is written for any N , as long as
N is finite. On the practical side, there is a curse of
dimensionality, as in all dynamicmodels withmultiple
strategic agents and large state spaces. However, one

of the appealing features of our algorithm is that it is
highly parallelizable, therefore the computational bur-
den can be significantly reduced by parallel program-
ming. In Figures 17 and 18, we show the equilibrium
value sets for two aggregate states from a three-firm
version of our capacity game. In this particular exam-
ple, the maximum number of machines per firm is set

Figure 17. (Color online) Three firms: State (1, 1, 1)
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Figure 18. (Color online) Three firms: State (2, 2, 2)
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to two, therefore nk � 2. Otherwise, the parameters are
the same as in our benchmark case, Case 1. For this par-
ticular example, we used 133 different search subgradi-
ents and 61 quantity choices per firm. This translates to
almost one billion LP problems per iteration. It took 72
iterations for the outer approximation to converge, and
76 iterations for the inner approximation. With 8,000
cores, the outer approximation took 38 minutes, and
the inner approximation 42 minutes.
Figures 17 and 18 also display an equilibrium path

starting from the lowest symmetric value in state
(1, 1, 1). The path nodes are numbered correspond-
ing to the order of moves starting from node 1 in
(1, 1, 1). Firms move to state (2, 2, 2), to an equilib-
rium value close to the lowest symmetric one (node 2),
but then gradually move toward higher value nodes
(nodes 3–5), and then jump back to the Pareto fron-
tier of state (1, 1, 1). This path is similar to the path for
Case 1 (See Figure 9), in that, the path to cooperation
involves a period overinvestment and overproduction.
It’s also important to note that this particular path is
not part of an MPE, since the equilibrium play in state
(2, 2, 2) involves a period of staying in the same state
and then moving to state (1, 1, 1) deterministically.

5. Conclusion
Most strategic games admit many equilibria. In the dy-
namic case, the multiplicity is often much more severe.
One way to simplify the analysis of dynamic games is
to restrict strategies or to concentrate on certain types
of equilibria. While such restrictions can make prob-
lems more tractable, especially in macroeconomic pol-
icy games where conditioning policies on entire histo-
ries may be viewed as too costly or infeasible, they can
eliminate equilibria and confine them to fewer applica-
tions in other settings.

In this paper, we provide an alternative approach
to analyzing dynamic games. Instead of attempting
to eliminate the multiplicity, we provide a numeri-
cal method for computing all SPE of dynamic games.
Our method is based on the theory of repeated games
and provides an iterative scheme, which maps convex-
valued correspondences into convex-valued corre-
spondences monotonically, and with a suitably chosen
initial correspondence, delivers an accurate approxi-
mation to the true equilibrium value correspondence
of the underlying game. Our algorithm has three parts.
The first provides an outer approximation to the equi-
librium value correspondence. This outer approxima-
tion is constructed such that any value outside of the
approximation is not an equilibrium value. The second
provides an inner approximation to the equilibrium
value correspondence; any value contained within this
inner approximation is an equilibrium value. Together,
the two approximations “sandwich” the true equi-
librium value correspondence and deliver a practical
check of approximation accuracy. The third part of our
algorithm delivers sample equilibrium paths.

We then apply our algorithm to an oligopoly compe-
tition game with endogenous production capacity and
use it to compare equilibrium value sets and outcomes
across different cost, discounting, maximum capac-
ity, and investment flexibility cases. This application
demonstrates how our method can be used to gain
insights into equilibrium behavior in dynamic games
even when multiplicity of equilibria is an issue.
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