Climate variability: statistics and observation based simulations
/Characterizing potential future changes in temperature variability across frequencies:
The impacts of climate change on human societies may arise not just from changes in climate means but from changes in climate variability. Many agricultural crops, for example, are highly sensitive to even brief periods of stress temperatures, particularly at certain times of the growing cycle. Crop yields can be strongly affected by changes in temperature variability even in the absence of a change in mean. Understanding potential changes in temperature variability has therefore been a research priority in climate science.
Impacts of climate variability depend on not only the magnitude but also the frequency of variations: day-to-day temperature fluctuations have different consequences than year-by-year differences. We therefore study variability using spectral methods that allow distinguishing timescales of fluctuations. Current projects address climate variability in a number of ways
- comparing variability changes in present-day or preindustrial and and future equilibrated climates
- developing methodologies to characterize variability changes in transient climates
- evaluating the effect of model spatial resolution on temperature variability
In our study of equilibrated climates, we compare pre-industrial and future climate scenarios in two different climate models, CCSM3 and GISS-E2-R, with millennial runs so that each climate state is stationary. Following techniques developed in Leeds et al (2015), we compute integrated variability in distinct frequency bands and show changes over time as the future/present ratio. spectral ratios to explore the temperature variability changes in increased radiative forcing based on climate models. Within CCSM3, we also compare variability changes when warming is driven by two different forcing agents (CO2 and solar radiation).
Characterizing and emulating variability in a transient climate:
Characterizing climate variability is easier in stationary conditions, but the Earth for the foreseeable future will be in a changing or "transient" state, in which temperatures are evolving in response to changed CO2 concentrations. Most archived climate model output also simulates transient states. We therefore seek to statistically describe how variability changes in a transient climate. This statistical exploration also serves our overall research goal is also to use model information to produce "data-driven simulations" for use in impacts assessments. GCM output should not be used directly in impacts assessments, because GCMs do not fully reproduce present-day temperature distributions. Instead we develop methods of generating simulations of future temperatures that combine observational records with GCM projections of changes in variability (covariances). (See Figure 2 for cartoon, also description of emulation research.)
Again using the CCSM3 model, but now an ensemble of transient simulations rather than a single stationary run, we describe a statistical model for the evolution of temporal covariances in a GCM in response to altered CO2 levels. We find that, at least in CCSM3, changes in the local covariance structure can be explained largely as a function of the regional mean change in temperature, with a small term related to the rate of change of warming. (A warming climate will have slightly greater variability than an equilibrium climate at the same temperature.)
The statistical model can then be used to emulate the evolving covariance structure of temperatures, and therefore used to create in data-driven simulations that account for the projections of changes while still retaining fidelity with the observational record. We demonstrate the emulation of variability changes below, training the statistical model on model runs of several CO2 scenarios and using it to emulate changes under another scenario. Variability changes can indeed be described and emulated with a simple statistical model.
People: Jeremy Klavans | Liz Moyer | Andy Poppick | Michael Stein | Shanshan Sun
Alumni: William Leeds | David McInerney
Partners: Larissa Nazarenko | Gavin Schmidt